MKI Kicker Wire Measurements

F. Caspers, T. Kroyer

Measurement Set-up

- Fully assembled MKI kicker with ceramic pipe
- 0.5 mm copper wire placed in center of MKI Kicker

Three measurement techniques were applied.

- Ordinary transmission and reflection measurements without matching resistors. Easy to carry out, relatively high measurement uncertainty; multiple reflections inside the kicker can occur.
- Time domain gating used on the transmission and reflection data to remove multiple reflections. May introduce errors close to the limits of the frequency band.
- Resonator measurements. More tedious, but very high sensitivity at distinct resonance frequencies. Imaginary part of impedance cannot be derived easily.

Resonator Measurement

- The TEM transmission line composed of the coated ceramic pipe and the wire can be used as a TEM resonator
- Capacitive coupling with low coupling coefficient k chosen, where k is given by $k = S_{21}/(1-S_{21})$ [1]
- Loaded quality factor Q_L measured for each peak as well as S₂₁
- Line attenuation α can be easily calculated from [2]

$$\alpha = \frac{\pi}{\lambda Q_0} [\text{Np/m}]$$

• with $Q_0 = Q_L * (1+k)$ for k << 1 [1]

- For too strong coupling, the unloaded Q factor can be obtained by correcting the measured Q factor knowing S₂₁
- For too weak coupling the Q measurement gets impacted by noise
- An appropriate coupling coefficient between these two extremes was chosen

[1] Bray, J.R. and Roy, L., Measuring the unloaded, loaded, and external quality factors of one- and two-port resonators using scattering-parameter magnitudes at fractional power levels, IEE (2004)
[2] Meinke, H. and Gundlach, F. W., Taschenbuch der Hochfrequenztechnik, Berlin (1968)

Resonance Pattern

- Typical resonance pattern
- In this case the S₂₁ at the resonance peaks and therefore the coupling coefficient was a bit too high => errors in the range of a few % in the unloaded Q, since the correction is not exactly valid

Resonator Results

- Attenuation evaluated at 36 resonance peaks below 1500 MHz
- Measured attenuation only slightly above the values calculated for the wire used
- Two distinct kicker resonances found at 390 and 770 MHz
- Wire attenuation calculated from

$$\alpha_{w} \left[\text{Np/m} \right] = \sqrt{\pi \rho \varepsilon_{0} f} \frac{1}{d \ln(D/d)} \left[1 \right]$$

with the wire resistivity ρ , the wire diameter d and the beam pipe diameter D

 Finite skin depth effect as well as field penetration through slots was accounted for.

[1] Fontolliet, P.-G., Systemes de Telecommunications, Traite d'Electricite, Vol. 17, Lausanne (1999)

Resonator Results - Details

- Apart from the two kicker resonances, the additional attenuation is rather low, between 0.005 and 0.012 dB/m below 500 MHz
 MKI wire measurement 2005/06/15, couplin
- The attenuation of the wire is much larger that this additional attenuation

Frequency [MHz]

Kicker Impedance per meter

• The DC resistance R_0 of a wire of length L, resistivity ρ and diameter d is given by

$$R_0[\Omega] = \frac{4L\rho}{\pi d^2} [1].$$

[1] Meinke, H. and Gundlach, F. W., Taschenbuch der Hochfrequenztechnik, Berlin (1968)

- For skin depths δ small compared to d the high frequency resistance $R[\Omega] = R_0 * d/(4\delta)$ [1].
- This resistance is proportional to the line attenuation
- Comparing the measured kicker attenuation to the calculated wire attenuation the real part of the kicker impedance can be found

7

Attenuation with Spiral

- Measurements with spiral compared to longitudinal strips
- Higher attenuation found for spiral

Impedance of Spiral

• Impedance of spiral compared to longitudinal strips

Comparison of Measurement Techniques

- Wave power should add up to 0 dB, otherwise the results are unphysical (active device!!!)
 Power balance; 0 dB would be obtain
- Resonator measurement by far most reliable
- Good agreement between "Raw data" and "Resonator raw data" (blue)
- Ripples in "Raw data" due to multiple reflections inside kicker
- Gated data too high at low frequencies; residue of gating process
- Fair agreement between corrected gated data and resonator data (red)

Power balance; 0 dB would be obtained for a lossless device

Resonances below 40 MHz

- Rather strong resonances at 2.3 and 4.8 MHz have been found
- been found The impedance was calculated using the log formula $Z[\Omega] = -2Z_0 ln \left(\frac{S_{21,DUT}}{S_{21,REF}}\right)$ with the system impedance $Z_0 = 50 \Omega$ and the calibrated S_{21} representing the ratio $S_{21,DUT}/S_{21,REF}$.

[1] Chao, A. W. and Tigner, M. (Editors), Handbook of Accelerator Physics and Engineering (1998)

[1]

Imaginary Part of Z per meter

- Gated transmission data can be used, since wire attenuation does not impact phase
- Phase correction performed according to measured line length
- Correction very sensitive on length of connectors, even dielectrics in the connectors play a role...
- No peaks at low frequency visible like on the previous slide, since here gated data was used

Comparison with Previous Data

 The impedance of the entire MKI prototype was measured in 2000 (F. Caspers et al., Impedance Measurements on the LHC Injection Kicker Prototype, LHC Project Note 219, 2000)

Improvement:

- Roughly factor
 100 in real part of
 impedance and
- About factor 20 in imaginary part

Conclusion

- From these measurements we may conclude that we will not get a significant beam-induced heating problem in this type of kicker with the shielding strips properly installed (assuming 20 W/Ω)
- We do have strong resonances below 10 MHz where better damping could be evaluated, e.g. by using an MnZn ferrite torus instead of the recently used NiZn

Acknowledgements

 We would like to thank Laurent Ducimetiere, Noel Garrel, Volker Maertens, Enrique Gaxiola, Flemming Pedersen, Trevor Linnecar and Francesco Ruggiero for help, support and fruitful discussion.