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The independence of the impedance on the beam direction is an important fea- 

ture of an accelerator structure, in particular, for the electron-positron storage rings 

where bunches of opposite charges travel through the same vacuum chamber in oppo- 

site directions. Recently Gluckstern and Zotter’ considered a cylindrically symmetric 

but longitudinally asymmetric cavity with side pipes of equal radii. They were able to 

prove that for a relativistic particle the longitudinal impedance of the cavity with an 

arbitrary shape is independent of the direction in which the beam travels through it. 

Their result corroborates numerical observations of the independence of the wakefield 

obtained with the code TBCI. Bisognano2 gave an elegant proof of the same state- 

ment. His approach is based on a reciprocity relation applied to the tensor Green’s 

function. 

I follow here his idea in a somewhat simpler way to obtain more general and 

physically transparent proof of this property for both longitudinal and transverse 

impedances. The result is valid for a cavity with no azimuthal symmetry and for 

arbitrary particle velocity, as soon as it may be considered constant. At the same 

time the limits of its validity (th e side beam pipes must have the same cross sections) 

are shown. 

Throughout this note it is assumed that the particle energy is constant and does 

not change as the result of radiation in the structure. Further, small oscillations that 

a particle performs while moving in an accelerator are neglected. In other words, it 

is assumed that the particle velocity v is constant (at least while traveling through a 

structure under consideration) and has only one component V, along the axis. 

Consider a cavity of an arbitrary configuration and let a bunch of a charge travel 

through it along the axis z. We attach a subscript l(2) to all the quantities describing 

the case 4 when the bunch travels in a positive (negative) direction parallel to the 

axis z. To prove the theorem for both the longitudinal and transverse impedances we 

assume that the bunch trajectory is offset from the axis by a distance IRll. 
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There is only z-component of the current density. The Fourier harmonics for the 

two cases are: 

.L = @(r~ - RI) exp (%) , plw = * , 

.i2wz = -qS(rl - RI) exp (-%) , p2w = -?$Z . 

(1) 

(2) 

Note that: 

j2w = -j;, , paw = p;, . (3) 

The fields El, and Ezw excited by such sources satisfy the following wave 

equations: 

El, = 4rVp1, 
47riw . 

- ,2 Jlw , 

E2, = 4Tvp2, 
47riw . 

--7J2w , (5) 

as Cell as the boundary conditions for their tangential components: 

E&m = 0 , E2wltan = 0 , (6) 

and the radiation conditions for the radiated part of the EM field: 

lim Eiud(z, Rl,t) = 0 , 

lim Eaad(z,RI, t) = 0 , 

for z + fco. The longitudinal impedances 21 and 22 are3y4: 

&(w, RI) = -f / 
iw.2 

dz Elzw (h.4 ev -- 
( > 

7 
2, 

co 

22(W,%) = +i 
J 

dz Eatw (RI, z) exp . 

(7) 

(8) 

(9) 
-CO 
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Let us show that the fields El, and Ezw are complex conjugate. Indeed, by 

substituting Eq. (3) into Eq. (4) and taking its complex conjugate, one obtains: 

E;, = 4rVp1w 
47riw . 

-c,Jlw . (10) 

The boundary conditions shown in Eq. (6) are also valid for El,. We now need only 

one additional assumption: that the synchronous parts of both fields El, and Ezw 

are the same at infinity. This is the case when the side pipes have the same cross 

sections (at least at infinity). If this assumption is true, then the equations and all 

the boundary conditions for Ez, and El, are the same, and we may conclude that: 

E;, = El, . (11) 

From the Maxwell equation i(w/c)Br,a = V x E1,2 it follows that: 

B;, = -B2, . (12) 

Now multiply Eq. (4) by Ezw, and Eq. (5) by El,; subtract the results and in- 

tegrate over the volume of the cavity and the side pipes bounded by imaginary cross 

sections at 2 = j$, t + co. One then obtains the Lorentz reciprocity theorem5: 

47T - s dV (Ezw -.ilw - El, hw> = 
C J dS e (El, x B2w - E2w x Blw) . (13) 

The integration on the right-hand side is performed over the surface enclosing the 

volume over which the integration on the left-hand side is performed; i.e., over the 

walls of the cavity, the walls of the side pipes, and the bounding cross sections. Since 

the tangential electric field on the wall is zero, it is sufficient to perform the integration 

over these cross sections only. The integration over the transverse coordinates in the 

left side of Eq. (13) is p er ormed easily. The remaining integration over z gives the f 

longitudinal impedance; cf., Eqs. (8) and (9). We obtain the following expression for 

the difference of the impedances for two directions of the bunch travel: 

T (Z,(w, RI) - .&(w, RI) ) = / dS . [(EL, x B2w - E2w x BI~)~ 

(14) 

- (El, x B2w - Eaw x Blw)~l , 

where the subscripts R and L refer to the beampipe cross section at z = &[, respec- 

tively. Using Eqs. (11) and (la), this equation can be rewritten in the form: 
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y (-i&4 RI) - Zl(w, RI) ) = / dS. [(Elw x BTw + E;, x Blw)~ (15) 

- (El, x B;, + E;, x Blw)~l . 

The right-hand side of this equation is real. Hence, the imaginary parts of the 

impedances are equal: 

ImZr (w, RI) = ImZ2 (w, RI) . (16) 

- 

The integrals in the right-hand side of Eq. (15) h ave the simple physical meaning 

of the electromagnetic (EM) field energy flowing through the cross sections of the 

side pipes. If these cross sections are far enough from the cavity, then the only part 

of the EM field present on them is the synchronous component accompanying the 

bunch. This is a direct consequence of the radiation condition [Eq. (7)] which is 

assumed to be fulfilled here. For the case when both side pipes have similar and 

equal cross sections, the synchronous components of the field at z = foe are the 

same. It follows then from Eq. (15) that both longitudinal impedances are equal. 

Applying now the P anofsky-Wenzel theorem, we see that the same is also true for 

the transverse impedances. 

However, for unequal or nonsimilar pipe cross sections, the synchronous compo- 

. . 

nents of the two fields are different, even at z = &co. We cannot say that Eqs. (11) 

and (12) are necessarily true, and the real parts of the impedances for two directions 

differ by a constant. 

In the ultrarelativistic case y -+ CO for the side pipes with round cross sections, 

the difference of the energy of the synchronous components in the pipes with radii 

a and b is proportional to &(b/a). H ence, the difference of the real parts of the 

impedances are proportional to the same constant. An example of such a case is given 

in a paper6 where an abrupt change in the cross section (“step”) in a cylindrically 

symmetric pipe is considered. The impedances “in” and “out” are derived from the 

solution of a truncated system of the exact equations for the EM fields. 
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