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Summary

Computer simulation studies of single beam
.tzbility have been able to reproduce observed
shenomena in PEP and PETRA. These studies use wake-
Fields calculated from RF cavity dimensions and Monte
carlo techniques to study the effects of these wake-
fields. In this paper the procedurgs used are
reviewed, and some results are presented.

Introduction

Experiences at PETRAl’2 and PEP® have shown the
importance of single beam stability questions in
determining the performance of large e*e~ storage
rings. In particular, the need to study these
questions during the design phase of proposed rings
has become clear. Such a study requires knowledge of
accelerator wakefields and the inclusion. of these
wakefields in the equations of motion for beam
particles. Computer programs4-10 which calculate the
needed wakéfields are now available, and several
Monte Carlo studiesll,12 of single beam stability are
in progress or completed. The computer simulation
work has concentrated on PEP and PETRA to allow the
comparison of results with experimental observatioms,
and the agreement with experiment is reasonable.

This paper will review the techniques for cal-
culating wakefields and studying beam dynamics in the
presence of wakefields.

Wakefield Calculations

The available computer programs to calculate
wakefields have been written for the case of rotation-
ally symmetric structures. In the case of large elec-
tron storage rings the dominant contribution to the
impedance is from the RF cavities, and it is reason-
able to approximate these cavities as rotationally
symmetric.

For cavities of rotational symmetry and particles
traveling at the speed of light the voltage a
particle experiences when following a distance ct
behind a unit-charge, §-function particle isl3:

Vé(r,A,¢,t) =J§z Jdt‘ Ez(r,A,¢,t',z) §(t'-(t+z/c))

™~ (1
= 2 Ak rk cos ko Vk(t)
k=0

The quantities A,r and ¢ are defined in figure 1. In
this equation E_ is the field excited by the unit-
charge particle. The transverse impact is

pFLEb 0,0 =S Jdz farr Eread) ser-(ra/e)
-4 7 x A 2L (1) Fcoske-d sin ko).
k=1

The functions Wk(t) and Vk(t) are related by15

t
Wk(t) = —cI&odt{ Vk(t') . (3)
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Fig. 1. A unit-charge, §-function particle a
distance A from the symmetry axis of a rotationally
symmetric structure is followed at a distance ct by

a particle of charge q a distance r from the axis. ¢
is the azimuthal angle between the particles.

For the mode number k=0 the voltage Vg, is independent
of r,A, and ¢; in addition k=0 does not produce any
transverse deflection. For k=1 Vg is linear in r and
A, and there is a transverse impact. The impact is
independent of r and ¢ ((£ cos ¢-$ sin ¢) points in a
direction independent of ¢) and is linear in A, the
displacement of the source particle. Computer
simulations to date have been limited to k=0,1.

Two general approaches have been used to calcu-
late the time dependent terms in egs. 1 and 2. The
first of these approaches, time domain integration,
uses difference equations to approximate the
differential form of Maxwell's equations This
technique was introduced to accelerator physicists by
Weiland? who used it to calculate the k=0 wakefield.
Since then he has written a program® for k=0,1,... ,
and Aharonian et al.” have written one for k=1. 1In
a1l cases the wakefields cannot be calculated for a
§_function charge exciting the cavity. A smooth
charge distribution (typically a Gaussian) must be
used, and the frequency content of the wakefield is
limited to values-below some cutoff. For a Gaussian
the angular frequency cutoff is approximately equal
to the inverse of the rms bunch length. Figure 2
shows typical wakefields calculated by this technique.

The alternative approach is to find the normal
modes of the cavity structure and construct the
wakefield b; summing over these modes. For example,
for k=014s1

Vo(p) = -2 ; KA cos wy t. 4)

The Kj's are loss factors for the modes and wy's are
the resonant frequencies. For arbitrarilg shaped
rotationally symmetric cavities SUPERFISH/ can be
used to calculate the Ky's and wy's for modes with
k=0 or URMEL8 can be used for k=0,1,... . The
maximum frequency mode which can be calculated using
these programs is typically the cutoff frequency of
the beam pipe. Since this frequency is much lower than
that needed, approximations are used to extend the
frequency range. These approximations use KN7C®

and TRANSVERSE10,

KN7C (k=0) and TRANSVERSE (k=1,...} are programs
to find the parameters of modes in an infinite,
periodic, disk-loaded waveguide; their primary use has
been the calculation of the SLC wakefields!4.,” In
this latter application over 400 modes are identified
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Fig. 2. Wakefields calculated for PEP cavities. The
curves are for different beam pipe radii. The
longitudinal wakefields for k=0 and k=1 are shown in
a) and c). b) shows the k=1 transverse wakefield.
These wakefields were calculated using the programs
described in refs. 4 and 6.

and summed in eq. 4 (or its higher k equivalent). At
very high frequencies even this number of modes is
inadequate, and an "optical resonator model"9,14,18

is used to extend the frequency range. For arbitrarily
shaped cavities, KN7C and TRANSVERSE modes are used to
extend the frequency range of the wakefield to above
the beam pipe cutoff frequencyll,19,20

Several comparisons have been made between wake-
fields calculated by time domain integration and
those calculated by an analysis of modesl9,21-23 The
agreement is always good.

Modelling of Beam Dynamics

The equations of motion for particles in an
accelerator are modified to include wakefields and
other coherent effects. In the longitudinal the
synchrotron motion, radiation damping, and radiation
fluctuations are augmented by Robinson damping24 and
wakefields. The former term leads to the damping of
coherent longitudinal dipole oscillations and is due
to the interaction of the beam with the fundamental
mode of the accelerating cavities. The equations of
motion are

()LT0
@ =t (n-1)+ E e, () (52)

2T, 2T, _
€m(n) = Em(n-l) - ? €m(n—1) - '.q e (n-1)

Uy (1 - cos(w,g t (n-1))) - U sin(w g t,(0-1)) sin ¢

To L
+ 2050 ?;-pm(n) + Vm(n) . (5b)

where the symbols are defined on Table I, 1In
these equations m=1,..., M represents the beam par-
ticle number, and the argument n specifies the
revolution number. The wakefield is the last term in
the second equation, and it is dependent on the
transverse displacement of particle m and those that
precede it in the bunch if the k=1 contribution is
included (see eq. 1). This transverse displacement
dependence has the gotential of driving synchro-
betatron resonances<® which have been observed in one
simulation*<.

The approximation which is being made in eq. 5 is

that one turn is a sufficiently small fraction of a
synchrotron oscillation period that all of the
contributions to the wakefield can be combined into

a single term. If this is not a good approximation
fractions of a turn may have to be considered.
Alternatively, it mdy be possible to combine several
turns for very low synchrotron tunes.

In the transverse, wakefields are added to the

betatron motion and synchrotron radiation effects

T
2y (1) = (g (o (1) 2 (1) My (5 () 2y (0 1 - 22

and

T
zp(@) = My (e, (0)) 2 (n-1) + My, (g (n))z) (n-1)) |1 —T—Z
W2 (n)
a0+,

(6)

The symbols are also defined in Table I. The transfer
matrix elements M are made momentum dependent by
including chromaticity. The wakefield term gives the
angular kick that particle m receives, as eq. 2 shows
it depends on the transverse coordinates of particles
which precede m but not on the transverse coordinates
of m.

In computer simulations one approximates the beam
with a number of test particles, M, which is smaller
than the actual number of particles on the beam by
factors ~108. This has consequences for the treat-
ment of wakefields in eqs. 5 and 6, One approach
which has been used ex‘censivelyu’zo’zs’27 is to treat
each test particle as a 8-function source and calcu-
late the resultant effect on the other test particles.
In the longitudinal this procedure is sensitive to the
number of test particles. For example, the energy
spread from one simulationZ0 is well described as a
constant plus a term proportional to M-"%; the result '
for the energy spread is obtained by extrapolation to
M=, A second disadvantage of this approach is that
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knowledge of the short time (high frequency) wake-
fields is required,

An alternative is to describe the bunch as a
smooth charge distribution, p(t), which has
suffif%ent freedom to distort and develop coherent
modes~“. The test particles are used to determine
the parameters of p(t), and the wakefields needed in
eq. 5 and 6 can be obtained from these parameters.
The results of this method are insensitive to the
number of test particles and (within reasonably
unrestrictive bounds) the choice of the form for
p(t)l - An additional advantage is the frequency
cutoff of p(t) gives a maximum frequency needed in
the wakefield.

Results

At PEP with certain beam optics the beam current
has been limited by a transverse instability which is
present at zero chromaticity3. Equations 5 and 6 and
the wakefields shown in figure 2 have been used to
study the instabilitylz. Figure 3 is typical of the
computer simulation results near the instability
threshold. Growth is seen in both the beam size and
the mean transverse coordinate. The zero chromat-
icity instability has been explained by Kohaupt2 as a
mixing between coherent modes of the beam. The Qg,

Eo and B dependences of the threshold current as
determined by the simulation are in agreement with
those expected by Kohaupt. In addition mixing between
two coherent modes is clearly seen in a plot of tunes
vs. current (Figure 4).
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Fig. 3. The zero chromaticity instability at PEP,

a) shows the beam size, and b) shows the beam size

with the natural beam size subtracted. c) shows that

the instability is also seen in the center-of-mass

motion.
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Fig. 4. Tunes for three coherent modes vs, current.

lation finds threshold currents twice as large as th
measured threshold currents. This factor of two i :
agreement with estimates of the fraction of the >
transverse impedance due to the RF cavities3,

The major experimental 4
transver§e instabilities at PEP and PETRA is the
observation of significant center-of-mass motion i
the former case but not the latterl~3, Two com utn
simulations!?s12 have studied pErRA and both og tﬁr
exhibit instabilities without cente;—of—mass motio o
Figure 5 shows results from one of the simulationsn.

ifference between the

The differgnce between PEP and PETRA can be

by compari i i

parts of the transverse im;edanges 2% :ﬁ: i::fi?:ry
which are shown in fig. 6. (It is the imaginar °
part of the transverse impedance which causes tie t

?f the coherent modes to shift with current?8 ) Bogge
impedances cross zero around 2 GHz, The lowe;t ord
coherent mode of the beam is a mode which exhibits .
large center-of-mass motion and has 2 zero current *
tune equal to the betatron tune28 This mode hag a
frequency spectrum which is a Gaussiap with a mean
value of zero and an rms width of 1/2mg where 0 is th
Tms bunch length. For such 4 spectrum in PEP (whe ©
the naturgl bunch length is long) there can be litzf
cancellgtlon between the inductive and capacitive ae
of the impedance, The tune of the lowest mode shdﬁlgts
be strong}y current dependent, and it is not sur risi
to see this mode contribute to the instability prisine

) .F9r PETRA the short natural bunc
51gn1f1cant cancellation between the
capacitive impedances and thereby red
of the lowest mode, The effective i
lowest mode is reduced

b length can cause
inductive and

mix first; this will lead to
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Conclusions

The combination of numerical calculations of
wakefields and Monte (arlo calculation of beam
particle motion has been able to reproduce observed
single beam phenomena in PETRA and PEP. This type of
analysis should be performed during the design of
future accelerators,
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Fig. 5. The zero chromaticity instability in PETRA
shows growth in the center-of-mass motion which is

much less than the growth in beam size.

This is in

contrast to the results for PEP shown in figure 3.
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Fig. 6. 1Imaginary part of the transverse impedance

for PEP (a) and PETRA (b).

The arrows indicate the

rms width of the frequency spectrum of the lowest

coherent mode.
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TABLE I: Definition of Symbols used in Equations

Bor B
X

W 1)
m

Y.
Wm.

*
throughout x denotes horizontal, y denotes vertical,

22°

(5) and (6)

deviation from the zero current phase
stable time,

deviation from energy equilibrium,
momentum compaction,

beam revolution period,

beam energy,

radiation damping time for energy
oscillations,

Robinson damping time,

mean energy displacement (% z Em),
m=1

average synchrotron radiation energy
loss per turn,

peak energy gain from rf,

angular frequency of the rf,

zero current synchronous phase angle
(= cos~lu /00,

natural energy spread of the beam
Gaussian distributed random numbers

with mean=0 and rms=1,
longitudinal wakefield,
betatron oscillation coordinates,
slopes of betatron oscillation

coordinates,

the elements of the 2x 2 transfer
matrix (there are separate matrices
for horizontal and vertical).

radiation damping times for betatron
oscillations,

natural emittances of the beam

betatron oscillation amplitude functions

at the rf cavities,

transverse wakefields,

and z is used to denote either.
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