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Abstract

Both the longitudinal and transverse coupling impedance produced
by a small hole in the chamber walls are analytically evaluated at
frequencies below cut-off. The method developed is based on the Bethe
theory of diffraction by small holes. The estimates of the contribution
from such elements to the coupling impedance of the UNK and LHC
vacuum chamber are obtained.
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1 Introduction

The problem of the beam interaction with the vacuum chamber is of great im-
portance in modern high-intensity accelerators and storage rings. This inter-
action is usually studied in terms of the beam-chamber coupling impedances
or of wake potentials, see, for example, [1].

There is a general tendency to minimize the coupling impedances to avoid
beam instabilities and reduce heating. In doing so one tends to shield, with
respect to electromagnetic fields, all enlargements of the vacuum chamber, i.e.
vacuum boxes, bellows, etc. On the other hand, the requirement of the beam
life-time being long enough puts a constraint on the allowed value of vacuum
inside the beam pipe. Achieving this high vacuum requires the presence of
vacuum pumping holes or slots in the shields. The number of such elements
can be very large in big machines. For example, so called liners in the UNK [2]
have 26 slots per liner with the whole number of these liners in the ring being
3260. The LHC design [3] includes a thermal screen with nearly 107 small
holes for pumping. So, the evaluation of the coupling impedances for these
chamber elements is very important. Common wisdom tells us that these
small discontinuities contribute very little to the longitudinal impedance since
they do not interrupt the lines of beam-induced currents in the chamber
walls. Nevertheless, since the uumber of such discontinuities can be very
large, quantitative results should be obtained.

This paper presents the analytical calculation of both the longitudinal
and transverse coupling impedance of a small hole or narrow slot. It is
obvious that due to the absence of axial symmetry a numerical solution to
the problem has to be essentially three-dimensional. This implies very time-
consuming computations even in the case of a simplified model. On the
other hand there is a small parameter in the problem, namely, the ratio of
a typical hole size to a characteristic size of the chamber cross section. This
circumstance allows us to apply the Bethe theory of diffraction by small holes
[4] to the problem and obtain reasonable analytical estimates.

The paper is arranged as follows. In Section 2 we give the idea of the
approach and evaluation of the longitudinal impedance. Section 3 deals with
the transverse impedance. In Section 4 we discuss in short the problem of N
holes and give some estimates for the UNK and LHC.



2 The longitudinal impedance

To evaluate the coupling impedance we have to calculate the fields induced in
the chamber by a given current perturbation. In the problem examined this
task can be split into two parts. First, it is easy to evaluate the fields pro-
duced by a given current, say, by a relativistic point charge, in the chamber
without hole. Then we can consider these fields as incident electromagnetic
waves on the hole. It was shown by H.A. Bethe in 1944 [4] that, when a
plane e.m. wave is incident on an infinite conducting plane with a hole, the
diffracted fields can be obtained as fields radiated by effective surface "mag-
netic” currents or, in the case of a small hole, simply by effective electric
and magnetic dipoles. So, when this approach is applicable we can make the
second step, namely, replace the excited hole by effective dipoles and look
for the fields radiated by them inside the chamber. After evaluating these
fields we easily obtain the coupling impedance.

Two remarks are in order at this point. First, the Bethe approach was
used by M. Sands to estimate the energy loss from small holes for PEP [5].
He calculated the total power radiated by the effective dipoles and found that
the energy loss was very small. Second, the application of the Bethe theory
1s the usual approach in the waveguide theory for evaluating the coupling of
two waveguides by a small aperture, e.g., [6].

So, we will proceed in this Section as {ollows:

1. Calculate the fields produced by a charge on the hole.

2. Replace the excited hole by the effective dipoles.

3. Evaluate the fields produced by these dipoles inside the beam pipe.
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. Obtain the expression for the longitudinal impedance.

2.1 Beam fields in chamber without hole

Let us consider an infinite pipe with a circular cross section of radius & and
perfectly conducting walls. The cylindrical coordinate system (r,¢, z) has
the z axis directed along the pipe axis. Let a round hole with radius A
(h < b) be located at the point (r = b, = ¢g,z = 0). The point charge
g moves with velocity v = ¢ along the chamber axis with a transverse offset
@ = (r = a, = 0). Then the e.m. fields £, H® which would be produced



by this charge in the chamber without hole, can be expressed as a series over
azimuthal harmonics sinny and cosng (a <7 < b, v — o)
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All other components vanish on the wall. In the frequency domain (flw) =
[ dtexp (1wt)f(t)) the field harmonics on the hole, i.e. in the point (b, @0, 0),

are
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2.2 Hole excitation

Since b « b is assumed, one can neglect the wall curvature and consider
the hole excitation by the fields (2) in the spirit of the Bethe theory. To
be able to apply it, we assume also that the wall thickness is much smaller
than the typical hole size, and restrict our consideration to the case when
incident wave lengths are much larger than this size. To satisfy the boundary
conditions on the hole, the effective surface magnetic” charge density Pmag
and current ng have to be introduced. The current and density values are
related to the incident fields, Eq.(2). To calculate the fields produced by
this current at distances |R| from the hole, which are much greater than ,
one can replace the excited hole by effective dipoles. The effective magnetic
dipole moment is defined [6] as

M=— / dSprag
hole



and the electric one as
p=l / dS T % 7
o 2 hole mag T

It is very important that these effective moments are simply expressed in
terms of the incident fields. Let us consider an elliptic hole with semiaxes [,
and Il; (I; > ), and introduce the local hole coordinates (u,v) with u along
the major axis of the ellipse. The effective moments can be written [6] as

—
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P = epanEQ (3)

where &, and &, are the local coordinate unit vectors, @i is the normal to the
hole plane (u,v), E{) is the normal component of the incident electric field
on the hole and ﬁ£°) is the tangential component of the incident magnetic
field. For an elliptic hole the magnetic and electric polarizabilities o, and
a, are given by [6]
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where € = / 1 — [2/1? is the eccentricity, and K(g) and E(g) are complete
elliptic integrals of the first and second kind. Let the angle between the
chamber axis and the major axis of the ellipse be «. Since in our case
EQ = EO and O = (0, H®,0), see Eq.(2), it follows from (3) that

M = [@(m)sin® @ + @y cos? @) +
+ i (am1 — am)|)sin o cos o Hg’) : (5)
P = ead,E®

where d,, @, and @, are the chamber coordinate unit vectors.



For the particular case of a circular hole with radius A, € = 0 and we
obtain from Egs.(4)

4
Cm|| = am¢=§h3,
9
O‘Ie = —§h3 (6)

For another important limit, a narrow slot in the longitudinal direction (a =
0), with width w and length !, w <, we have ¢ — 1 and from Egs.(4) }

T
- —l 2
X | o w-
= T u?
o, = 24lw : (7)

It should be noted that the mentioned above condition for applying the
Bethe theory, namely, wh/c < 1, is not very restrictive due to the small
size of the hole compared to the bunch length. For the case of a slot these
conditions are ww/c <« 1 and wlfc <« 1. Moreover, to justify the far-region
approximation for a slot, we have to restrict ourselves to slot lengths / which
are not greater than b.

2.3 Fields radiated by hole in chamber

Now we are in the position to evaluate the e.m. fields radiated by the dipoles
(3) inside the pipe. Let us expand these fields in a series over the waveguide
eigenmodes [6]

F = F*9(z) + F0(-z) =
= Y (annFl0(2) + bam P 0(—2)) (8)
where F' means either £ or H and superscripts '+’ or ’~’ denote fields radi-

ated, respectively, in the positive (2 > 0) or negative (2 < 0) direction. In
Eq.(8) 8(z) is the Heaviside step function and the unknown coefficients a,.,
and bnm have to be found. The summation in Eq.(8) runs over the complete

1This value, niw?/24, for a narrow slot is cited also in [7], but paper [5] and book [8]
give another value, wlw?/186.



set of the eigenfunctions. The fields Efm and ﬁfm satisfy the homogeneous
Maxwell equations and can be written in the form

'E_"r::hm = (é:.:m + (é‘f)ﬂm) exp (:Frﬂmz) H
A%, = (A%, + (B5)am) exp (FTum2) - (9)

In Eqs.(9) (€f)am = 0 for H-modes and (Ef)mﬂ = 0 for E-modes. The

=

transverse eigenfunctions €%, and A% form a complete orthogonal set and

for a waveguide with circular cross section are well known, e.g. [6]. For
instance, for E-modes with '+’ sign which correspond to the propagation
factor exp(—T'nm2) they are
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where T2 = p2 /b2 — k% k = w/c; J, are the Bessel functions of the first
kind; Jo(fgnm) =0, n = 0,1,2,...,m = 1,2,.... For =’ modes [, is just
replaced by —T',,,. The eigenmode orthogonality conditions are

ff é“ﬂm ) é'-n'm" ~ 6nn‘6mm' }
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The integration in Eqs.(11) goes over a chamber cross section.
The e.m. fields (8) satisfy the inhomogeneous Maxwell equations, with
the current Jn., in the RHS. By means of the Lorentz reciprocity theorem



and with account of Eqs.(11) one can express the unknown coefficients in the
expansion (8) in terms of Jp,,, see e.g. [6]:

R R S

For a small hole the integral in the RHS can be expanded over the effective
multipoles

f dSJmayH = —iw(poﬁfmﬂ — Efmﬁ +quads+...), (13)
hole

in which M and P are given by Eqgs.(3).
Then, taking into account the explicit form of the eigenmodes, Eq.(10),
we rewrite Eq.(12) for E-modes as

an

tom = g (ol My — (€7 )omPr)
an
bom = 2002, (“O(h Jam My = (€] )am ) (14)

where ¢ and h are taken at the hole, i.e. in the point (8,0). In Eqs.(14)
P, and M are deﬁned by Egs.(5) and the normalization constants are

_ b T
ol = Hig:g}wnzfo E}Jz (”}:mr) (15)
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2.4 Impedance evaluation

The longitudinal impedance can be defined as
1 oo
Z(w) = —Ef dze ™ E,(r =0, z;w) , (16)

where & = w/c. Substituting the field longitudinal component E, at r = 0
from Eq.(8) gives

Z(w) = —— 3° Hom (17)



It is seen that only azimuthally symmetrical E-modes (n = 0) contribute to
the longitudinal impedance. Let us restrict ourselves to frequencies below the
chamber cut-off, i.e. w < w, = ugpc/b. This restriction is only for technical
simplicity since in this case we can easily integrate over z in Eq.(17) without
worrying about conditions at z — Foco. After carrying out this integration
we get

= 1
E F_ [bom (Tom + ik) — gom(Tom — 2k)] .
Om

-Dl»—'

m=1
Substituting aom and bom from Eq.(14) leads to
#omv]1 (#om)
= —t— | P. M —_——r
Z(w) zqE b [ + ] Z ol ’

and, since of,, = 7pd.,JZ(pom) (see Eq.(15)), to
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The series in the RHS of this equation can be analytically summed up [9]
and the sum is equal to 1/2. Taking into account the expressions (5) of the
effective moments and Egs.(2) with n = 0 for the beam fields, we obtain for
an elliptic hole

. Zow

4(w) = —141r2cb

(ae + am|| sin® & + oy cos® a) , (18)

where the polarizabilities are given by Egs.(4). For the case of a circular
hole we use the polarizabilities (6) and get a fairly simple expression for the
longitudinal impedance:

Zo C.u"ha
61rr2 cb?

Z(w) = (19)

which shows an inductive contribution of the hole.? Respectively, the usually
quoted quantity, so called reduced impedance, is

Z(HWU) ___Zo h3
n  6r?RR’

2It will be recalled that we use exp(—iwt) time-dependence.

(20)

9



where n = kR = wR/c is a harmonic number, wy = ¢/R is the revolution
frequency and R is the machine radius.

For a narrow longitudinal slot whose width w is much less than length
I we use Eqs.(7) instead of (6) and obtain in the same way Z(w) =0, ie.
the longitudinal impedance of a very narrow slot vanishes to a first-order
approximation of our approach. To get a nonvanishing expression, it seems
necessary to take into account next-to-leading terms in (7), l.e. while ex-
panding Eqs.(4) with € — 1, and contributions from quadrupole term, see
Eq.(13).

It should be mentioned that we have obtained the same results, Eqs.(18)
and (19), also with a slightly different approach. We have considered the
excitation of a hole by a single perturbation mode instead of a point charge
and used the corresponding definition [10] of the longitudinal impedance.

3 The transverse impedance

With the notations introduced above the dipole transverse impedance is de-
fined by

—4 ] 00 -
Zi(w, 7 @)=~ [ dee™® [ G(E, — ZH)(r w5 (21)
ga Joo

+ E¢(E¢ + ZOHr)(rv (P,Z;UJ') ] )

where the Fourier-components of the e.m. fields have to be taken along the
path of a test particle, which has the transverse offset 7 = (r,), and the
coordinate unit vectors d,, @, correspond to this point. The limit of r — 0,
a — 0 is usually assumed in Eq.(21). It is clear that both the E- and H-
eigenmodes contribute to the integral. Note also that in an axisymmetric
structure Z, = 0 but the hole breaks this symmetry. After some calculations
which are similar to those for the longitudinal case we obtain for an elliptic
hole with the major axis oriented along the longitudinal direction (a=0)

> - - . Z . - .
Z (w,7d) = —'*WTL [ @ cos{ — o) — @y sin(p — o) ] (22)

(Ctm1 X1 cos o + @Dz sinpg) .

One can easily get convinced that the vector sum in the square brackets is
just the unit vector in the direction of the hole. We shall denote it as a- (o).

10



So, there is no dependence on ¢, i.e. on the position of the test particle. The
same holds with respect to a = |@|, the value of the initial particle offset.
Two series enter Eq.(22). The first one can be analytically summed [9]

-] !
Him

¥ = =1,
S O R VAT
where Ji(¢},,) = 0. But the second series,
> 1
Ti= Y ——
? mZ=1 Jo(#1m)

seems divergent. To be more precise, it is a conditionally-convergent series,
i.e. the sum depends on the prescription of summation. For instance, taking
the prescription X = limg,oo(E5+ X511)/2, where £7 = m=1(Jo(p1m) 7" is
the nth partial sum, leads to ¥3 = —1. However, we can fix this problem in
another way. Instead of inventing the prescription let us look at the symmetry
of the problem.? It is rather obvious that |Z(wo)| = |Z(—wo)|. Hence, the
function in the round brackets in Eq.(22) has to be an even function of g. So,
Y. must be equal to zero! Therefore, the correct prescription, which respects
the problem symmetry, has to give ¥ = 0. As a result, the transverse
impedance of a single small elliptic hole is

—~ . am —
Z1(w) = ~iZ0—5-(170) cos po (23)

This means that the deflecting force is directed to (or opposite to) the hole
and its value depends on the azimuthal angle wy between the beam-offset
vector and the direction to the hole.

For two particular cases we can obtain from Eq.(23): the transverse
impedance of a circular hole is

4k

ZJ_(w) = —z'ZO-WE, (o) cos oo (24)
and that of a narrow slot is
Z) (w) = —iZo—?i&',(Lpg) COS Py - (25)
247 bt

3The author is indebted to Dr. G. Déme whose remark on this symmetry gave a hint
on the solution of the problem.
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If we consider now two opposite holes in one cross section and assume an
additivity of the low-frequency impedance, that is customary, the result will
differ from (24) or (25) by a factor 2. But when we consider M (M > 3)
holes uniformly spaced in one cross section, the resulting impedance 1s

2R3

ZJ_(L:J) = _iZOWMEI 3 (26)

and for M slots
Z () = —iZ W 27
1(w) = —i LTy a , (27)

where @; = @/|d| is the unit vector in the direction of the beam transverse
offset. It is seen that

o the deflecting force is now directed along the beam displacement, i.e.
some restoration of the axial symmetry occurs;

s the maximum value of |Z,| is only M/2 times larger than that for
M=1

4 Many holes and a few estimates

4.1 Many holes

The results of previous Section concern a single hole or a few holes in one
chamber cross section. But usually there are a lot of holes along the beam
path. Let their longitudinal spacing be d. When d 3> h we can use the Bethe
theory as in the case of a single hole, but the field pattern is now a result
of superposition from all holes. Moreover, different holes are excited with
different phases. So, some kind of interference seems to be present. But we
will argue that one can obtain reasonable estimates while disregarding these
considerations.

First of all, we deal with low frequencies, below cut-off. It is the com-
mon wisdom that small discontinuities contribute additively to the coupling
impedance in this range. Indeed, an expected condition of a strong interfer-
ence has to be of the form kd = 2nm, m is an integer. It assumes frequencies
above the chamber cut-off when d < 5. On the other hand, if d > b, the
excited waveguide modes from one hole do not reach the next one. It follows

12



from the fact that for k = 2xm/d the attenuation length is of the order of
L =Tg =~ b/pn < d. So, we shall assume an additivity at low frequencies
for further estimates. But, in fact, this problem remains to be examined
more carefully. We also refer the reader to the paper by M. Sands [5] which
contains some consideration on the subject.

With this assumption let us first compare the longitudinal impedance
produced by pumping holes in the shield of 2 small cavity with that of the
unshielded cavity. Let this cavity have a depth A and length g, with A < b
and g < b, and let the ratio x of the whole area of holes, Nwh?, to the cavity
area seen by the beam, 2mwbg, be fixed from vacuum requirements. The low-
frequency longitudinal impedance of the open cavity would be approximately
[10]

w Ag

Zc(w) o~ _EZUET

and that of N = 2xbg/A? holes from Eq.(19) is

.., w 2hg
Zh(w) - —120%3—“55 .

Hence, shielding reduces the impedance by a factor

which is small compared to unity since usually s < 0.2 and & < A.

4.2 Estimates

First, consider the impedances produced by the pumping slots in so called
liners in the UNK [2] vacuum chamber, which are the e.m. shields. Approxi-
mately N = 3260 vacuum boxes with bellows will be shielded by these liners
and every liner has M = 26 narrow pumping slots with width w = 0.6 cm
and length ! = 6 cm. For our estimates we shall take the chamber radius
b =3.5 cm and the machine one R = 3306 m. To be rigorous, for this case
we are nearly beyond the framework of our approach, since ! > b, and the es-
timates obtained are rough. Moreover, for the longitudinal impedance of the
slots we show here only an upper limit, namely, the contribution from mag-
netic term, which is equal to and cancels, to a first-order approximation, the

13



electric one. It seems naturally to expect that a second-order result will be
smaller. Our low-frequency impedance estimates are shown in Table 1. For
a single slot Z, stands for the maximum value of |Z, |, i.e. with cos wo =1,
see Eq.(25).

I Table 1: Impedance Estimates for the UNK Slots—l

il | 1Z/n|, Ohm ] Z,, Ohm/m |
One slot <7-1077 7.2
One liner || «2-1075 93.6

[Total | <006 | 31.10° ||

These values of the coupling impedances are not dangerous.

In the LHC design [3] it is supposed to shield the vacuum chamber which
will be at 1.9 K by an internal thermal screen. It will contain approximately
N =107 vacuum pumping holes with radius £ = 192 mm. The longitudinal
spacing is d = 1 c¢m and the machine radius is R = 4243 m. Hence, there
will be nearly M = 4 holes in a chamber cross section. We shall take the
mean radius of the thermal screen b = 1.5 ¢m for our estimate. The figures
are shown in Table 2.

{ Table 2: Impedances of the LIC Roles

” | |Z/n|, Ohm I Zy, Ohm/m ”
h=1mm|h=2mm[h=1mm]|kL=2mm
One hole 6.7-107° | 5.3-10°8 1 8.05
One cross section | 2.7-10~% | 2.1. 10~ 2 16.1
| Total L 007 T 08 T 5-10° | 4-107 |

The values of the longitudinal and especially transverse total impedance
seem unacceptably large even in the case of smaller holes. So, we conclude
that some modifications of this thermal-screen construction are niecessary.
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Note added

After this work was completed, the author has been informed* of a recent
paper [11] treating the same subject. Using the 3 dimensional code T3 in
MAFIA [12] the authors of paper [11] have estimated the contribution of
a single hole to the longitudinal wake field. Fitting the numerical results
leads to |Z/n| ~ woZgh?/(cb?), in our notations, and the numerical factor
approximately coincides with that of Eq.(20).
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Appendix

On the real part of the longitudinal impedance

We have obtained the purely reactive longitudinal impedance of a single
small round hole, Eq.(19). It will be recalled that we have considered the per-
fectly conducting walls and frequencies below cut-off. But the beam energy
is lost to excite the hole. We can estimate the real part of the impedance in
an indirect way, calculating the energy radiated by the hole. This evaluation
is essentially the same one as in the paper by M. Sands [5].

Let a bunch with normalized longitudinal charge distribution A(s) move
along the chamber axis with velocity v = ¢. In the case of a point charge
A(s) = &(s). The total energy radiated in vacuum by the effective dipoles
M(t) and B(t) is

AU:[: diW (1) = 6?; ]_Z dt Liz (%M(t))2+ (%ﬁ(t))ﬁ} .

Since E.(z ~ ct) = ZoH,(z ~ ct) = gA(z — ct)/(2rbeo) we have for a round

hole 3
5 q
)= —-—— —ct
0= ~To 2z~ ot
and ook
— q C .
M(t) = 37h Alz — ct)



Then we rewrite AU in the w-domain:

5Z,q°h% oo
= 108;46%4 f_m du | M)

where A(w) = [dsexp(iws/c)A(s) is the bunch spectrum (A(w) = 1 for a
point charge).
On the other hand, AU = kq?, where the loss factor k is

AU

_L /" 2
k= o Lw dwRe Z(w)|A(w)|* .
So,
AU = Lq2 foo dwRe Z(w)|A(w)i? .
27 —oa

Comparing two expressions of AU/ and taking into account that the inte-
grands are positively defined we get for a round hole

57, (wh\* A2
Re 2(w) = 5 (T) B

The calculation of the energy loss of a Gaussian bunch with this expression
reproduces the result by M. Sands.

One can easily recognize that in the framework of our assumptions, i.e.
with whfe € 1 and & < b, the inequality

ReZ < |Im Z|

holds.
The same approach gives in the case of a narrow slot

Zo  [ww\1 [
Re 2(w) = &o1ox (T) 2
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