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Introduction and Summary

A glance at Figs. 1 and 2 shows some of the contor-—
tions that a single bunch can undergo as it progres-
sively destroys itself., The instability is driven by
the surrounding environment, which extracts energy from
the longitudinal directed motion of the bunch and con-
verts it into growing transverse oscillations. As
pointed out by Pellegrini® and Sands?, simple rigid-
bunch motion is possible only in the exceptional case
of zero machine chromaticity; otherwise there is
always a phase-shift between head and tail of a bunch.
While the original and still widely used theory of
Courant and Sessler® is restricted to rigid-bunch mo-
tion driven by long-range wake forces, the more recent
head-tail theory of Pellegrini and Sands is restricted
to the opposite limit of short-range wakes that act only
from head to tail of a bunch, and not from bunch to
bunch or over many revolutions. In addition, it was
developed mainly for the unrealistic hollow-bunch dis-—
tribution (see Fig. 3).

This paper presents a unified approach for a para-
bolic bunch that includes both single~turn and multi-
turn effects. The main ingredients are

i) oscillation modes
ii) transverse coupling impedance Z, (w)
iii) stability criterion.

The derivations are given in other papers”’® and only
the results are presented here. A companion paper
presents the recent experimental observations in the
CERN PS and Booster.

Classification of modes

If all particles have the same betatron frequency
Wwg = Qwo and synchrotron frequency wg, and we ignore
tﬁe transit time of the bunch past a fixed observer,
the first few head-tail modes appear as in Fig. la.
The difference signal from a position monitor has the
form

j2mkQ
E

A-signal « pm(t)e (1)

for the kth revolution,

Usually both Q and the revolution frequency Wp
depend on momentum, so wg varies as a particle moves
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Fig. 2 Head-tail modes observed in the CERN Booster®.

around a synchrotron orbit. The important quantity
is the betatron phase of a particle at each position
along the bunch as compared with the phase of the

synchronous particle. -The total phase—shift X between
head and tail has contributions from the Q-variation,

the wo variation, plus the finite transit time. In
fact, the last two contributions cancel, and we are

left with £
X = 7 QonL (radians) , (2)

where_g = (dQ/Q)/(dp/p) is the chromaticity,

n = YTZ - v"2, and 11, is the bunch length in seconds,
The difference signal has the form (Figs. lb and lc)

A-signal « pm(t)engt+j2ﬂkQ s 3)
where
G 4
wa TL n Qwo . (4)

Note that for the example shown in Fig. lec, mode 2 has
appreciable contre-of-mass motion and would leave a
long-range resistive-wall wake whereas mode O would not.

For a parabolic bunch, the modes p_(t) are approxi-
mately sines and cosines as shown in Fig. 1, while for
a hollow bunch they appear as in Fig. 3 with

T (t/t.)
p (£) = — Pt (5)
ﬂVﬁ - (t/TL)2

where Tmis a Chebychev polynomial.

a) x=20 b)

X = 5 radians c)

X = 9 radians

Fig. 1 Contortions of a single bunch on separate revolutions, and with six revolutions superimposed.
Vertical axis’'is difference signal from position monitor, horizontal axis is time, and Q = 4.833.
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Fig. 3 Hollow-bunch modes for the same
parameters as in Fig. lec

Coupling impedance

Longitudinal
_ 2mR ,
2 T T ‘Rsurf 6

where 27MR = machine circumference, b = vacuum chamber
radius, and Rgyps is the surface impedance in ohms per
square. In this case the beam sees a uniform longitu-
dinal electric field set up by the return currents
flowing in the vacuum chamber walls,

Transverse

The wall currents flow in opposite directions on
either side of the vacuum chamber (or whatever is en-
closing the beam) and set up a transverse magnetic
field and a longitudinal electric field that varies
in strength across the aperture (Fig. 4). Energy

Fig. 4 b4

/i w
>
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Currents:
I = wall current
W
Jo(x,y—Aert,z) = beam current density
9J jwt
= Jo(X,y,Z) - 'a_&_o AeJ
with I = beam current = fJy(x,y,z) dx dy .
Fields:
Ez = Eg %-eJMt (median plane)
B = d Eo ejwt (from V X E + B = 0)
X w b

extracted from the directed motion of the beam by
the longitudinal electric field drives the wall
currents, which set up the dipole magnetic field,
which deflects the beam. Expressed in equations,
the power lost per unit length by the beam is

fE'dedy=—-]%9-A/y%§—°dxdy N
=EOA
b

while the power flow into the walls is —ZIWEO, and there-
fore

A
$I. (8)

This current is related to the electric field at the
wall by the wall impedance,

T . (9

E0=4
where in place of the actual current distribution in the
wall, we assume that I  is confined within a strip of
width % the pipe circumference, This gives the correct
result for a circular pipe, which has a cos 6 current

distribution, The deflecting magnetic field is (from
Fig, 4)
__. 20 Z;I jwt
I T Y i 10
and when this is inserted into the definition
27R
S [E + VXB] ds
. 0 1
L= , (ohms /metre)
BIA
(11)
one finds
2c Z
Zl=‘5'2-u|;, (12)

where ¢ is the speed of light (3 x 10° m/sec) and
B = v/c. The definition (11) was introduced by Hereward,
and is used extensively by the ISR group.

The convenient relation (12) between Z, (w) and
Z,(w) is strictly valid for a round pipe with surface
impedance Ry, f and for frequencies sufficiently below
cut-off that the fields have the simple form shown in
Fig. 4. On the other hand, for perfectly conducting
walls CRSurf =0)

. RZyg [ (13)

_ 1 _ 1
Z, = -] Ez?z a7~ BT
where Zo = 377 ohms, a = beam radius, and b = pipe
radius, The additional contribution due to wall re-—
sistivity can be found from (6) and (12) with

Ropp = L+ Dk

(thick-wall) , (14)

surf

where p is the resistivity (ohm-m) and § is the skin
depth, which is assumed to be smaller than the wall
thickness. At low frequencies where § > wall thick-
ness %,

=L (thin-wall)

ﬁburf 2 15

provided the impedance of the outside material (air,
magnets, etc.) is sufficiently high that all currents

348




flow through the walls. At low frequencies, Z, is

just the d.c. resistance of the vacuum chamber, typical-
ly about one ohm for stainless steel, and increases

with frequency as v owing to the skin effect, Inter—
ruptions in the conducting vacuum chamber for ceramic

or ferrite sections leads to much larger impedances.

More elaborate and accurate calculations of Z, and Z,

or equivalently U and V can be found elsewhere’ 1?
but the above approach is often sufficient,

)

Growth-rates in the absence of frequency spreads

The growth-rate is

L (16)
T
and the motion is unstable if Im Aw is negative, For

purpose of comparison, the coastlng—beam growth-rate
is found from -

o J eB Z,(wI :
Aw 2wB Y TR (coasting beam) (17)
=U+ (1L - )V
with w = (n + Q)we + Aw for the mode withln]wavelengths

around the machine circumference 2mMR, beam current I,
particle rest mass my, B = v/c, and wp = Qwg. MKS units
are used throughout with an assumed time dependence

exp (jwt). To compare with papers using exp (-iwt),
replace j with =i in all formula.

For a bunched beam, the growth-rate involves a
sum.over the bunch spectrum. We need

. 2
ho(w) = B (]

where p_(w) is the Fourier transform of p_(t) (see

Fig. 5):" The spectrum is discrete with lines at w, =

= (p + Qup, =® < p,< @ for a single bunch or several
bunches oscillating independently. For coupled motion
of M bunches, only every MED iine occurs with p =n + kM,
—w < k < «, yhere n is the coupled-bunch mode number.

It specifies the phase difference ZWInI/M between adja-—
cent bunches,

The growth~rate for mode m is found from
Z(w)h(w W

PR B T PR B Y
P mp &

(18)

Py, (W)

Frequency spectrum for modes 0
with x =

Fig. 5 to 3

where I, is the current in one bunch of length L metres.
The factor (1 + m)~! arises because the motion for the
higher-order modes is constrained more and more to the
few particles with large synchrotron amplitudes; this
factor is absent for the hollow-bunch. Equation (18)

is the general result, In the limit of short-range
fields or smoothly varying Z (w), it reduces to the
classic head-tail effect, while in the opposite limit
of long-range fields or rapidly varying Z,(w), it gives
the multiturn contribution.,

) stabte

] unstable

Fig. 6

As an example, consider Fig. 6, which is drawn
for a positive phase shift X so one is above tramsition
with £ > 0 or below transition with £ < 0. The phase
shift ¥ = 3 X 27 corresponds to three oscillations along
the bunch., Only the resistive or real part of Z, (w)
causes instabilities, and this is drawn for a resistive-
wall type impedance. Regardless of the type of impedance,
the resistive part of Z, is positive for positive fre-
quencies_and negative for negative frequencies [from
Eq. (12)] From the figure, one sees that mode m = 0
is stable for X positive and unstable for X negative,
and that this is true for any type of impedance.

If Z (w) is sufficiently smooth that the sum in (18)
can be replaced by an integration (discrete spectrum
replaced by continuous spectrum), the growth-rate is
independent of betatron frequency. In fact, the impe-
dance shown is sufficiently smooth that it can be re-—
moved from the sum, and we find

Z (w)I
= eB i &7
Awo ZwB Ymg 2TRB (19)
which is just the coasting beam result (17) for the
frequency wg with a bunching factor included
(B = ML/27R? 1 = MI,).
It is convenient to rewrite (18) as
_ 1 efl
Awm 1+m B Ymg 2ﬂR
(20)
(2]
_foo Zl(w)hm(w-wg) dw

SACNA TR

—_—

1
B Tn d
_{o rrl(w) w

—_—

near field,
independent of Q,
~0o0or §~>0

multiturn fields, de-
pend on Q, multiply by
1/M for independent
bunch motion

with the slowly varylng part of Z (w) separated from
the rapldly varying part, where only one or a few lines
Wy (n + Q)wo contribute. The form factor F' () is
plotted in Fig. 7. "
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Fig, 7

If only a single line is important as for the narrow
spectrum shown in Fig. 8, Eq., (20) again leads to the
coasting beam result (17) but reduced by the factors

F’ and (1 + m)~!.
Re Z(U’)
gl .

00—
o,

| stable

unstable

Fig. 8

A less obvious case is the resistive-wall impedance
shown in Fig. 9, but here also only a single line con-
tributes strongly to the 1ong—range wake, namely the
line w_ = (n + Q)wy nearest the origin., One easily re-
covers the usual rule that the mode number |n| just
above Q grows fastest. In the limit. £ = 0 and for the
thick-wall impedance (14), the multiturn part of (20)
reduces to the familiar Courant and Sessler formula®
(as corrected by Mortonl!,?2), However, ¢ is rarely
zero, and often the frequency In—Q[wg is sufficiently
small that the thin-wall impedance (15) applies with
consequently larger growth-rates. Although Fig. 9 is
drawn for mode 0, for large enough X the spectrum of

Re Zl (W)
stable ‘_/__
-RT | [ T~
l 1 1\
. . R b o 1 v-reo . = )
unstable E

Fig. 9 The frequencies wy = (n + Q)wy drawn for
mode m = 0 and Q just below an integer

mode m overlaps the high impedance region near the
origin: for example for ¥ = 9 radians, mode m = 2 grows
fastest (see Figs. lc and 7).

Now consider only the near—field part of (20). As
an illustration of the graphical approach, the growth-
rates of modes 0 and 2 for a resistive-wall impedance
are sketched in Fig. 10b. As pointed out above, mode 0
is stable for positive ), but one sees that mode 2 is
unstable for small positive X, and the reason is evident

stable ReZz, (w)
™ 2
- w
o X
ST
unstable L
Q)
ImAw
i stable m=0
\ m=2
- \ x
o
N
Y unstable \ (IM-“—))
b) B /coasting-beam

Fig., 10

from Fig. 10a. For Y sufficiently large, both modes have
the same stability character as the coasting beam. The
exact result for the thick-wall impedance (14) and sinu-
soidal modes is shown in Fig, 11, and the growth-rate

is found from

! eBfI
Awm 1+m ZwB ymg 2TR x
(21)
x[JH Z (@0)F_(X) + 2, (W )E! (X-u_T,)
MB “L V0% q LM m nL’}] "
At this point some history is-in order. The for-

mula of Pellegrini! and Sands? is just the near-field

part of (20), but expressed in the time domain and
written explicitly for the hollow-bunch modes (5) and
the resistive-wall impedance (14). They simplified the
integration by considering only small ¥, and found that
the modes with m > 0 are unstable when mode 0 is stable,
and vice versa. Later Zotter'® carried out the integra-
tion numerically and found results similar to Fig. 11,
However, the resistive-wall impedance is not sufficient
to explain the fast growth-rates or absence of higher-
order modes in electron storage rings. This is also
true for the PS: Gareyte® has made detailed measure-
ments of growth-rate as a function of phase-shift ¥ and
has deduced from (19) that above 100 MHz the impedance
rises slowly with frequency to a broad maximum around

1 GHz. Such an impedance can result from the several
metres of ceramic and ferrite elements required for
extraction magnets®. A slowly rising impedance also
from

explains the absence of higher-order modes:
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Fig. 12 one sees that in this case the broad positive
part of the spectrum contributes more than the narrow’
region of negative frequencies near the origin. This
was also pointed out by Ruggiero'*. oOne should have no
trouble imagining other types of impedance and estima-
ting the corresponding growth-rates.

Re 7, (W)
Pahie

0

mode i//‘

/ w

Fig. 12

Stability criterion

A sufficient spread in bunch frequencies prevents
the coupled-bunch type instability. Such a spread may
arise from a difference AN in bunch populations, via
the coherent Laslett frequency shift Aw, = AQ wy. For
decoupled motion, the r.m.s. spread in bunch frequencies
should exceed the growth-ratel2

|| [-ANE)

rms

> |, (22)

and this may occur for large space-charge forces.

Octupoles cure either single-bunch or coupled-bunch
instability if they produce enough frequency spread with-
in a bunch to prevent its coherent motion, that is pro—

vided the spread in betatron frequencies exceeds the
frequency shift Awm .

|full-spread at half-height of Quo| > [Awm] .
(23)

Sextupoles or changes in machine chromaticity change
the phase-shift ¥, but do not contribute to Landau damp-
ing. TFor the long-range resistive-wall instability ob-
served in the PS Booster, increasing X shifts the insta-
bility to higher-order modes which have slower growth-—
rates. The opposite occurs for the PS or electron
storage rings, namely the growth-rate increases as Y
is made more negative.
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