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TUNE SHIFT OF COHERENT BEAM-BEAM OSCILLATIONS
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The coherent beam-beam oscillation is a good probe to the beam-beam interaction in
storage Tings. It can artificially be excited by a frequency-changeable kicker. The amplitude
of the coherent oscillation can be very small, as long as it is above the sensitivity level of the
detector, so that it does not disturb the beam-beam phenomena. The beam emittance can
then be estimated by the observed tune shift of the coherent oscillation.

However, in order to make use of this, we need a relation between the tune shift of the
mode oscillation, Av;, and the so-called beam-beam parameter
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lations. where f,(y) is the horizontal (vertical) beta function, e the classical electron radius, N the

number of particles in a bunch, v the beam energy in units of rest mass, 04 the r. m. s.
beam size and the asterisk denotes the values at the collision point. When there is one bunch
. , per beam and there is only one collision point in the ring, the 7-mode tune shift has been
ses with varying .
i given by ~

Avy = A 2)
with A=2 and 1 by Piwinski[2] and by Hirata[3], respectively. (In this paper we discuss only
the linear term in £.) :

An intensive analysis has been done in the TRISTAN Accumulation Ring at KEK using
Hirata’s formula, which seems to be the better among the two. However, the value of the
horizontal emittance estimated in this way has always been smaller by some 30 percent than
the value computed from the design optics. .

. The purpose of the present paper is to solve this discrepancy by reconsidering the theory
of the coherent beam-beam interaction. A similar analysis has been done by Meller and

‘Siemann(4] for the vertical oscillation of very flat beams.
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Horizontal Oscillation of Very Flat Beams

Fust let us discuss the horizontal coherent oscillation of very flat beams. It is a very
ecial case because it is reduced to a one-dimensional problem.

We assume that there is one bunch per beam and one interaction point and that the two
ns are equal in energy, population and optics.

equation of motion of a particle in the positron bunch is dz /46 = voops and
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Here, s is the length along the design orbit, £(§) the ordinar
Vos the unperturbed tune, B, o, the unperturbed Twiss parameters, ¢, the unperturbed
emittance and 6,(9) is the periodic delta function with period 2x. The equilibrium distribution
in the absence of the beam-beam interaction satisfies gzz) = (p2) = 1 and (zp,) = 0. The

electron distribution function p(~) is normalised as o)z, 9)dzdy = 1. We average 6,(9)
and replace it with 1/2x.

In the limit of very flat beams, i.e., R

y horizontal (vertical) coordinate,

=0,/0; — 0 we get

0o (=)
gﬁ = —Vpe T — 2£zp.v./ p_ﬂdz'

de — o T —x!

where p.v.  denotes Cauchy’s principal.value. The Vlasov equation for the phase space
distribution function of the j-th beam ¥()(p,, z; ) (j=+,—) is

ou(+) ou+) (s 0), , 8gH)
) +Vozw—2§¢p.v./ P dz’ - I )

P (z;0) = / ¥z, p.;8)dp,.

Here, we have introduced the (unperturbed) action-angle variables (Iz,¢:) defined by z =
V2I; sin $< and p; = /21, cos Pz ‘

Since we are considering the coherent oscillation with an infinitesimal amplitude (the
incoherent oscillation amplitude is finite), we linearize eq.(4). We split ¥ into the equilibrium
and the oscillation part as ‘Il(j)(pz,a:;é') = g0 4 U 2> Z;0) (j = +,~). The equilibrium
distribution ¥(© s 5 function of I, only up to the first order of &,, and we assume in the
following the Gaussian distribution YONL,) = e = /27. The linearized Vlasov equation is

D oy LA VST O R
—60—+V03m =2{ p= P-V-/T_x,-dx + _aEP-V-/"_m,——dz dpz| (5)

with p©)(z) = I, ¥, dp, = e=12/\/2x. The perturbed part %) can be expanded in
terms of e"™%=_- Since there is no coupling between the modes of different m up to the first
order in £, we retain the dipole term (m =1) only and write

¢(j)(Iz; ¢a:v; 0) = %ei(qs’_Ve)e_I’/‘?f(j)(Iz).

Substituting this expression into eq.(5),

multiplying exp(—ig,) on both sides and averaging
over ¢, we obtain

ML) = QU DE) - [7 6, 1) f¥ayar, ()

_ 1-— C_I’ N —(I,+I')/2 min(I,.,,., Ii.)

One can easily verify that the X-mode solution is exactly given by f("')(Iz) = fNI,) =
e~ T=/2 with the eigenvalue A=0.

In the following we will consider the x-mode and put f(I) = f4(I,) = —f (')(Iz)-
Then, eq.(6) becomes

M) = QA + [~ 6k, 1), o
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In order to solve eq.(7) we expand f(I.) using Laguerre polynomials

3_13/2 é’ll'_)(Lz)

f(Ia:) = i fm'"'m(lx) with um(I:x:) = \/-Ta:- \/m——l-l

m=0

which satisfies the orthonormality condition [5° wm(Iz)¥m!(Iz)dlz = Smm:- The Laguerre
polynomial L(*)(z) is defined by

n k
1) = 30 )

k=0

{a > -1).
Then the integral equation (7) becomes a matrix equation for fm;

/\fm = Z (Qmm' + Gmm')fm’ (8)
m'=0
where

Ot = / * QU )um (LYt (L)1,
0

After some manipulation we get

Grmt = / dIzdI;G(Iz,I;)um(I:r)um'(I;)
0 .

1 i o (k4 k)
! = min(m+1,m'+1) — PYSR YT
¢ V(m +1)(m’ +1) [ ( ) ,;éo R HEFLEIE!
Gt 1 (m + m')!

= Jm+ D) + 1) 27+ Hmim/t

If we truncate the expansion at order M, eq.(8) becomes a matrix eigenvalue problem.
The convergence of the largest eigenvalue w. r. t. M is very good and we get A =1.330 orx
Av, = 1.330¢, for the horizontal oscillation of very flat beams.

(In addition to this solution, there is a continuum in 0 < A <1 which corresponds to the
incoherent oscillation. See [1] for the detail.)

The projected distribution p(z;#) is plotted by the dashed line in Fig. 1 for the shift of the
center-of- mass X sin #6=0.1 sigma. (The full line is the equilibrium Gaussian distribution.)
One finds that only the central part oscillates with the tail sitting still.

General Aspect Ratio
Next, we extend our formalism to the case of gemeral values of the aspect ratio R =
o,/0%. We will consider the horizontal oscillation only but the vertical oscillation can easily
be obtained by exchanging z and y and replacing R by 1/R.
By decomposing the four-dimensional phase space distribution fanction as ¥ = ¥OX(I,, L)
+ $U(I,, 65, I, ¢y; 0) with the equilibrium distribution ¥()(I,,I,) = e~=~v/(27) and by
taking the dipole term 9\¥) = Rei($z=0)e~U=+1I2£([, T,), we get the linearized Vlasov

MO, 1) = QU BT, ) - [ 61y, I I)FOUL LT, )

v — vg.) /€, as before and

14+ R / dodo sing, (v2I;sin Oz — z') exp(—(za + yﬂ)/2) ds'dy
473 0oL, (VoL sin g — o) + R /2L sin ¢, — ') ’

Q(Iz, Iy) =
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2((12;:):{) e—(Ts+Iy+IL+1) 2 / dpodd,dd.. ‘d%

g VT cos® ¢,(v/2T; sin ¢, — /T sin ¢1,)sin 4 ‘
(V2L;sin ¢, — /2T sin ¢1,)? + R2(,/2L, sin ¢, — \/ﬁ sin ¢!)2

The terms involving £, vanish by the average over ¢,.

One can confirm that eq.(9) has an exact Z-mode solution A=0 with f() = f(=) =
Ie—Us+1)/2,

The 7-mode equation is given by putting f = f(+) = — f(-) as

G(I;, I, I;,Is’,) =—

Af(Iz, Iy) = Q(Ue, L) f(Iz, 1) +/G(Iz,Iy,I;,I;)f(I;,I_,’I)dIa’,dI;. (10)

The Laguerre expansion now takes the form

Iz, 1) = i Frmntm(Lz)vn(1y)

m,n=0
where v,(I,) = e"1/2L)(1,). The matrix equation is then

)\fmn - Z (an,m’n' + Gmn,m'n')fm'n' (11)

m'n’

where the explicit forms of @,y m't and Gran,mt' are given in [1].

The eigenvalue is plotted in Fig. 2 by the solid lines. (The Laguerre expansion is taken
up to m+n<M=20. The eigenvalues are believed to be correct to three decimal places.) The
dashed line is an empirical fit by a second order polynomial of r = R/(1+ R) = ¢}/(s% + oy)
using the three data, namely A(R = 0)=1.3298, A(1)=1.2144 and A(00)=1.2385. The resulting
formula is

A A
ZPom = A(r) = 1.330 — 0.370r +0.279r2, 20T _ A1 —p). (12)
Ea: g!l
In practice this formula is accurate enough as seen in the figure.
The eigenvalue is in a narrow range 1.21<A<1.33 and is rather insensitive to the aspect
ratio. It has 2 minimum near R=2 (r=0.67).

A precise measurement of A for horizontal and vertical tune shift of a flat beam has been
done at TRIATAN accumulation 1ing[6]. The agreement with our theory was excellent.
Meller and Siemann[4] have presented an analysis of the vertical oscillation of flat beams
by a different approach using ‘averaging method’ which is equivalent to extracting the dipole
mode in our way. The integral equation they got seems to be the same as ours but they
quote the 7-mode eigenvalue A=1.34 to be compared with our value 1.2385. The difference
~ is not large and is probably due to their limited matrix dimension. They also computed the
Y-mode and obtained A=0.097 which has to be exactly zero. Presumably, this is due to the
matrix dimension or to the misidentification of modes.
E. Keil[5] has presented the result of tracking studies of the vertical oscillation. He found
that the 7-mode tune shift is considerably lower than that of Piwinski’s formula. It agrees
with our theory qualitatively.
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More General Cases

Consider beams with different beam-beam parameters. We still assume the equal beam
size, one bunch per beam and oqu one interaction point. Let us denote the beam-beam
parameter on the j-th beam by 59 ) (f=+,—). One finds the coupled integral equation

Ar f = €DQIM - Go fO),  An ) =@ - @o f)

where Go is the operator (G o f)(I,,1,) = fG’(Iz,Iy,I;,I;)f(I;,I;)dL’,de’I and @ and G are
the same functions as before.

The X-mode solution is the same as before becanse Qf — G o f = 0 for that function.
On the other hand, the 7-mode cannot be separated and we have to solve numerically. We
have employed the same Laguerre expansion (truncated at M =20, which gives the matrix
dimension 462x462). The resulting eigenvalue is plotted in Fig.3a. Here, Av, is normalized
by (5§+) + gﬁ,‘))/z and the horizontal axis is r = R/(1 + R). (We omitted the curves for Ay,
because they are merely a reflection w. r. t. the line r=1/2.) Each curve corresponds to a
fixed value of R; = 5:(5_)/55;"). (Obviously, R; and 1/R; give the same eigenvalue.)

The same data is plotted in a different manner in Fig.3b where the horizontal axis is R,
and each curve represents different 7. The curve for R = oo seems to agree qualitatively with
that in ref[4]. One finds that the curves in Fig.3b are rather flat when R is not far from
unity, which means

Ao~ SEDTENE) (SRS (13)

is a reasonable approximation.

It is easy to generalize our formalism to the case of Ny bunches per beam with 2NV,
interaction points. Usually the rigid bunch model gives N, modes, i.e., X-mode, m-mode and
Ny — 2 intermediate modes. It turned out that all the intermediate modes are incoherent
modes actually. They do not show sharp spectrum but merely give a continuum in (0, 2N,¢).
The X-mode is trivial and the ouly significant mode is the 7-mode whose tune shift is given
by Av = 2N¢A(r) with the same function A.
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