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The integrated wake-forces for an ultra-relativistic beam are usually constrained to a special canonical configuration 
in r and θ, assumed to be valid completely independent of the particular boundary. It will be shown that for 
(reactive) wakes in structures with non-constant cross-section this canonical configuration is too restrictive. Even in 
a round structure an m=0 mode or an on-axis beam can very well cause transverse momentum kicks for off-axis 
trailing particles. Also numerical integration of the accelerating voltage across a cavity should be done on the axis, 
the assumed scaling laws to other radial positions being invalid. 
 

I. Introduction 
In different texts on accelerator physics ([1] (Fig. 2.1 

a-c, referenced p. 57), [2], [3] p. 78f, [4]) it is shown 
that in general, and independent of the particular 
boundary, when particles moving at the velocity of 
light travel through a beam pipe the mth multipole 
wake always scales in the radial direction as rm. In 
particular this means that the m=0 monopole wakes 
are considered to be constant, independent of r, and 
hence, due to the Panofsky-Wenzel (PW) theorem [5], 
they do not create any transverse momentum kick. 

These studies – except for [3] – rely on the same 
common fundamental feature: it is always assumed 
that the integrated longitudinal force is transmitted 
uniquely by so-called synchronous waves. These 
synchronous waves, whose properties are exploited 
only implicitly  in some calculations, are traveling 
waves of different frequencies but all having a phase 
velocity, vφ, matching the particle speed vp=vφ→c. 
Contributions from any other traveling wave with 
different phase velocity – which may very well be 
excited by the leading particle – average away. In the 
only study not relying on synchronous waves, the 
method of the ‘generalized integration contour’ [3] is 
used. Here, a term with an assumed asymptotic 
behavior as 1/γ2 is neglected; in reality it has a 
constant asymptotic behavior. These studies will be 
analyzed later in more detail showing that they are all 
invalid for structures with non-constant tube cross-
sections. 

It is well known that in structures with changes in 
cross-section, there exist fields other than traveling 
waves, the so-called evanescent or attenuating modes 
(or space-harmonics), which cannot be ‘decomposed’ 
into traveling waves as is the case for ‘classical’ 
standing waves. These fields have a different radial 
behavior for the mth multipole than a simple rm. These 
“evanescent” fields can be superimposed onto the 
classical traveling waves to create fields that are on 
average synchronous – i.e. very well able to produce 
non-vanishing forces – but which are different from 

true synchronous waves and which have a very 
different radial configuration.  

Therefore in this paper the radial behavior of wake 
fields in perfectly conducting but non-smooth 
structures will be examined and it will be shown that 
the canonical configuration is not guaranteed in 
general. 

A lack of proof does not mean that a theorem is 
invalid: another proof may be constructed. To settle 
the case once and for all, an example of an infinitely 
long circular structure with a perfectly cylindrical 
symmetric (m=0) field will be analysed to show that 
the integrated longitudinal force clearly depends on the 
radial position of the (trailing or test) particle, in 
definite contradiction to common convictions. 

 
II. Present convictions 

The integrated wake forces for vp=c particles in a 
structure with a metallic boundary are generally 
presented (e.g. [1]) in a canonical configuration as  
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This is very surprising at first glance since any 
multipole m has a single contribution proportional to 
rm exclusively and no further contributions with other 
powers of r exist, as one could naively expect. On top 
of this, this behavior is not only valid for a special 
boundary but is completely independent of it. Further 
calculations, based on this canonical configuration, are 
considerably simplified and the results are readily used 
in different contexts. For example, it is claimed that an 
on-axis beam in a round structure does not produce 
transverse momentum kicks even for off-axis trailing 
particles. 

The special case m=0 of (1) is simply  
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In any beam pipe with a circular boundary (but 

where the circular cross-section may change in the 
longitudinal direction) any contributions from modes 
m>0 are excluded for an exciting beam on axis. This 
means that the integrated longitudinal force seen by 
the trailing particle, (2a), is completely independent of 
its radial position, and the integrated transverse force, 
(2b), the transverse momentum kick, is identical to 
zero (in agreement from (2a) with PW). 

On the other hand, the fields believed to be at the 
origin of the wakes are solutions of Maxwell’s 
equations in cylindrical coordinates having an Ez-
component of the type Jm(kr·r)·cos(mθ)·cos(ω·t-kz·z) 
(see Appendix A1). The monopole function J0(x) can 
be represented as a globally convergent infinite series 
of powers of x, the lowest two terms being 1–x2/4. 
Hence, for J0(kr·r) the lowest terms are 1–(kr/2)2·r2. 
This justifiably raises the question as to why in (2a) an 
r2 term does not exist, and this in general and for any 
(round) boundary. 

The fundamental line of thought evoked (partly 
implicitly) is straightforward: The leading particle may 
very well excite many waves of the form 
Ez=A·J0(kr·r)·cos(ω·t–kz·z) with many different kz. The 
trailing particle is assumed to travel with vp=c, hence 
the longitudinal integrated wake force F|| due to such a 
partial wave of amplitude A along a path from z=L1 to 
z=L2 is 

 
    
F|| = e / c ⋅ A ⋅ J0(krr) dz  cos

L1

L2

∫ ((ω / c − kz ) ⋅ z)    (3) 

When increasing the length of the integration path, 
F|| will oscillate with constant amplitude but remain 
bound for all kz except kz=ω/c. In the latter case the 
integrand is cos(0)=1 and F|| will increase linearly with 
path-length, dwarfing more and more all other 
contributions (delta-function). Only this special wave 
has to be considered as contributing to the wake 
forces.  
   The parameters kr and kz are not independent. To 

make such functions valid solutions of Maxwell’s 
equations, the frequency constraint (Appendix A1) 

    (ω / c)2  =  kr
2  +  kz

2  (4) 
has to be respected. In the above special case kz=ω/c it 
follows that kr=0 and hence all powers of kr·r 
disappear, with the exception of the constant term. 
This is then considered as proof of the configuration 
(2); in essence, “contributions from all non-
synchronous waves average away”. It is easy to show 
that this line of thought leads to the same reasoning for 
any m>0 where the synchronous wave has a single 

non-vanishing coefficient for rm, and is considered as 
proof for (1). 
 
II.1 Review of the proof 

This proof assumes implicitly that all Maxwellian 
field patterns can be expressed by the superposition of 
infinite traveling waves, i.e. waves that travel without 
any change of phase and amplitude from z=-∞ to 
z=+∞, and that (for any frequency) there exists one 
special such traveling wave, the synchronous wave, 
that is exclusively capable of transmitting non-zero 
integrated longitudinal forces onto particles with vp=c. 
Therefore this latter wave imposes its radial behavior 
onto all non-vanishing integrated wakes, 
longitudinally and, via PW, transversely. 

However, it will be shown in the following that there 
also exists an infinity of Maxwellian fields that 
transmit non-zero integrated longitudinal forces but do 
not have the canonical radial configuration (1). These 
fields can be viewed as a superposition of multiply-
reflected elementary plane waves (as are light rays); 
they are not (infinite) traveling waves as exclusively 
assumed by (1). 

In the following chapters the above claims will be 
elaborated. This will be done using elementary physics 
means first, including a definite counter-example to 
(1); this eliminates any hope of saving (1). Then a 
more elaborate analysis will be done on the 
‘additional’ fields. It will be demonstrated how RF 
acceleration can be achieved even without 
synchronous waves by having “on average” 
synchronous fields. 

Then the ‘proofs’ given in the literature will be 
analyzed to show that they are not valid for structures 
with non-constant cross-section. 

Finally the implications of these necessary changes 
of concept will be discussed. 

 
III. Elementary physics methods 

All Maxwellian fields can be expressed as the 
superposition of plane waves [6]. Such plane waves, as 
for light rays, traveling in the z-direction only have E 
and B field components perpendicular to the direction 
of propagation, and hence, while they can be 
synchronous with a vp=c particle, they have no local 
nor integrated longitudinal interaction. 

 In free space these waves travel unhindered but 
when (perfectlya) reflecting surfaces are present they 
may be reflected to and fro between these surfaces, 
hence interrupting the otherwise infinitely long path. 

A simple case [6] is, for example, an infinite 

                                                 
a all surfaces are implicitly assumed perfectly conducting in 
this paper  



metallic plane hit by a plane wave with an angle of 
incidence α. Luckily all reflections add up to 
something simple, a new plane wave traveling in the 
‘mirrored’ direction π-α. Best of all, incident and 
reflected plane waves can be combined 
mathematically to something that appears again like a 
single wave traveling from -∞ to +∞ with a 
propagation speed different from c. Since the 
elementary waves travel in an inclined direction, the 
energy propagation velocity of the combination, the 
group velocity, is u=c·cos(α), hence less than c. The 
‘phase velocity’ v with which maxima and zeros 
appear to travel along the metallic plane [6], is 
v=c/cos(α), and hence is no longer synchronous.  

The combination has a new feature: due to the 
projection of the field components onto the now 
inclined common axis (angle ±α) longitudinal field 
components appear. 

This interesting feature might be summarized as: 
either the wave is synchronous but has no longitudinal 
interaction or it has a local longitudinal interaction but 
loses synchronicity; in any case the integral is zero. 

When the reflecting surface becomes a smooth tube 
– i.e. it has the same cross-section for any z – the to 
and fro reflections of the elementary plane waves can 
luckily again be grouped mathematically into traveling 
waves from –∞ to +∞ that can be expressed by the 
well-known functions, cos(m·θ) in the azimuthal 
direction, cos(kz·z) in the axial direction, Jm(kr·r) (for 
Ez) in the radial direction and cos(ω·t) in time. Since 
cos(kz·z)·cos(ω·t) can be written as a linear 
combination of cos(ω·t±kz·z), all Maxwellian fields in 
a smooth tube can be expressed by linear combinations 
of these traveling waves.  

The question can be asked: when all these functions 
describe Maxwellian fields in simple smooth tubes, 
how does one  describe fields when someone makes a 
dent in any of those tubes? It raises the suspicion that 
there must be many more Maxwellian solutions than 
the above traveling waves to cope with the infinity of 
possible dents in the surface of any of those tubes. 

In fact for each single traveling wave solution there 
exists an infinite set of further solutions of Maxwell’s 
equations that are, mathematically speaking, linearly 
independent, hence can not be decomposed into 
traveling waves. Field patterns have to be expressed as 
a superposition of all these solutions. 

These required, additional, solutions appear when 
‘opening a new dimension in the parameter space’ by 
using complex k, but always respecting (4). 
Derivations can be found in Appendix A1. The full 
two-dimensional complex kz-parameter space is shown 
in Fig. 1.  

All solutions with purely real kz behave as traveling 
waves, i.e. are proportional to cos(ωt-kzz), but for 
|kz|≥ω/c there is no r for which Ez is zero (see appendix 

A1), hence these solutions cannot physically exist in a 
(perfectly conducting) smooth tube. The ‘classical’ 
traveling waves with |kz|<ω/c, physical solutions in a 
smooth tube, are present in Fig. 1 as a one-dimensional 
line of limited length. The endpoints of this line 
present the two synchronous waves at vp=±c. 

The ‘additional’ non-traveling solutions with 
Im(kz)≠0 are the ‘evanescent modesb’, ‘attenuating 
modesc’ or even “space-harmonics”. They are  
superimposed onto the traveling waves to form ‘fringe 
fields’ as soon as e.g. a wave guide has a bend or twist, 
or an obstacle such as a tuning post or an iris exists. 
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FIG. 1: The two-dimensional kz parameter space in the 
complex plane (units ω/c). Requiring Im(kz)=0 and |kz|≤ω/c 
(red line), ‘classical’ traveling waves are only a tiny sub-set; 
the endpoints (blue dots) are the positive and negative 
synchronous waves. For any single traveling wave solution 
there exists an uncountable number of other solutions, nearly 
all having a non-zero integrated interaction with vp=c 
particles. 

 
But the complexity of all possible fields in all 

arbitrary structures is so large that it is (in the general 
case) not possible to write down a globally valid 
unique expression using ‘common’ functions such as 
cos, exp or Bessel functions. In [7] it says: “… the 
exact solution of Maxwell’s equations for the field 
distribution existing near a discontinuity is very 
difficult, if not impossible to obtain”. In this case field 
matching [7][8] is used to find a description of the 
field everywhere in the structure. The whole structure 
is split into a, frequently infinite, series of adjacent 
limited volumes. Each volume has common 
(matching) surface(s) with its neighbor(s). In each 
volume the field is expressed as an ‘infinite’ series of 
‘common’ functions, i.e. using the full set of possible 
complex kz, locally respecting Maxwell’s equations 
and offering all possible solutions in any volume. 
Matching ensures that Maxwell’s equations are 
guaranteed across the matching surfacesd. 

                                                 
b as in [7], p339 
c as in [11] 
d In a loose way this procedure can be compared to the 
Taylor development of an (analytic) function over -∞ to +∞. 



The sum of all these local solutions then describes 
the field in the whole structure. Field matching is not, 
as one might think, a ‘numerical fudge’ to get an 
approximation solution, but is the only way to have the 
exact (read: reasonably precise) field description using 
everywhere a limited number of ‘common’ functions. 

Now one of the initial riddles, which has plagued the 
author for a long time and partly triggered this work, 
can be solved. In a single cavity with two infinitely 
long beam tubes the tubes definitely carry no field for 
the trapped modes of the cavity, i.e. modes below cut-
off frequency. How then can a hypothetical 
synchronous wave, claimed to be the unique carrier of 
the integrated force, be present in the empty tube, 
especially since a solution with kz=ω/c cannot exist in 
a smooth, perfectly conducting, tube? Taking the claim 
of the unique synchronous wave literally, RF 
acceleration should be impossible. 

However, by including the ‘additional’ solutions 
with Im(kz)≠0 , all pieces fall into place. There is a 
segment of the classical standing waves (i.e. opposing 
traveling wave pairs) in the main cavity volume. 
Fringe-fields, composed of evanescent modes (the 
‘additional’ solutions), essentially localized around the 
cavity-tube transition, form a field pattern that – 
together with the standing waves – complies with 
Maxwell’s equations and connects the field volume of 
the cavity with the empty tube volume(s). The 
integrated force is ‘created’ only over a short range so 
that ‘synchronous’ loses its primary sense and it would 
need very special circumstances such that an integral 
like (3), with bounds that are in practice finite, comes 
up with a zero-value. This then finally agrees with the 
fundamental beam-loading theorem [9], “allowing” RF 
acceleration. 

In the above single cavity example one might now 
execute a double Fourier transform on the total field 
pattern. The first transformation is spectral, separating 
each ω-component of the field; the second separates 
the azimuthal modes m (which includes the full modal 
spectrum of this cavity). Then, for each such mode, a 
path from z=-∞ to z=+∞ with any chosen r can be 
Fourier analyzed in the z-direction yielding Fourier 
coefficients f||(�z,r), each representing a ‘wave’ of 
wavelength λz=2π/kz along the z-direction. It would 
appear that the traveling waves are re-appearing 
Phoenix-like out of the ashes, but this is not true: these 
Fourier coefficients are simple mathematical objects 
without direct physical meaning. 

Since an infinite number of solutions with non-zero 

                                                                           
It can be done around any chosen point x0, with an infinite 
number of terms perfectly correct for all x. But many terms 
(read: cannot be done easily with common functions) are 
necessary for a good precision in a region far away from x0. 
Then it is better to use a different development around xn 
(read: use the nth local field-map). 

integrated force make up the coefficients f||(�z,r), one 
cannot, without justification, relate f||(�z,r1) and 
f||(�z,r2) by simply imposing a ‘scaling law’ which 
would be found for the synchronous wave 
f||(�sync=ω/c,r). Detailed knowledge of the field map 
with all the modes involved – and with it the specific 
boundary – has to be incorporated. 

Claiming that all solutions can be expressed by 
traveling waves alone is equivalent to expressing an 
N-dimensional vector by the basis vectors of an n-
dimensional sub-space with n<<N. This works only 
under very special conditions – here for smooth tubes 
– but not in general. 

 
IV. Refutation by a counter example  

 

 

 

 

 

 

 
 

FIG. 2(a) – 2(g): Drift tube structure with vp=c and phase 
velocity v=2·c during one oscillation. The traveling RF wave 
is presented as a green sine-like line, the particle as the red 
dot. Time is running from top to bottom. 
 



The facts described above invalidate the given 
‘proof’ for (1). The burden of proof is now again with 
the proponents of (1), either to deliver a different proof 
or to abandon the claim. 

To settle the case once and for all – to disprove (1) – 
a counter-example will be shown. This counter 
example ‘happens’ in a perfectly round drift tube 
structure (Fig. 2) and a short explanation of its 
working principle follows. 

 
IV.1 The drift tube structure 

A drift tube structure [10] consists of a large tube of 
‘infinite’ length, into which a non-synchronous m=0 
wave is injected. Concentric with the beam axis are 
regularly spaced shorter sections of much narrower, 
hollow, drift-tubes interrupted by gaps, through which 
the beam passes. The length of tubes and gaps is 
adjusted such that a vp=c particle passes through a 
tube, hiding it from the wave when it would cause 
deceleration,  and then passes by a gap when the wave 
can provide acceleration. This is sketched in Fig. 2(a) 
– 2(g). 

At the tube-gap transitions there have to be ‘fringe 
fields’ composed of ‘evanescent modes’, to fulfill 
Maxwell’s equations. 

This type of a structure is used in the main (traveling 
wave) RF system of the CERN-SPS at 200 MHz and 
supplies up to 8 MV per turn. 

 
IV.2 The counter-example 

A perfectly round drift-tube structure, as in Fig. 2, is 
assumede with cylindrically symmetric m=0 fields 
excited exclusively. The special case (2) is then 
applicable and the integrated longitudinal force should 
be independent of the radial position where the particle 
passes.  

 
FIG. 3: Different paths along the drift tube structure, central 
Vacc>>0 and grazing Vacc→0. 

 
A drift-tube structure is designed for a beam passing 

only inside the drift tubes. However, since there are no 
obstacles between drift tubes and main tube, there 
exist other possible particle paths completely inside 

                                                 
e Lateral stems to mechanically hold the drift tubes have no 
electrical function and may be omitted RF wise [10] 

the structure and never crossing any metallic 
boundary. The path inside the drift tubes shows 
efficient acceleration as demonstrated above. On the 
other hand a path grazing the large tube’s inner 
surface, where the longitudinal Ez component has to 
approach zero, has asymptotically zero acceleration 
(see Fig. 3). 

This radial behavior is in clear contradiction to (2) 
which implies that a perfectly cylindrically symmetric 
field should accelerate a vp=c particle with the same 
strength at any r. Hence the longitudinal integrated 
force (called acceleration in this context) is 
definitively not produced by the cited synchronous 
wave(s). 

One claim might be made  to save the situation: 
since there is a metallic interruption of the total 
volume at the drift tube level, one inner and one outer 
synchronous wave might exist with radially constant 
acceleration in each sub-volume (i.e. zero outside and 
Vacc inside the drift tubes) and with a discontinuity 
across the drift tube walls at radius rd. However, one 
can easily show from first principles that the 
‘transition’ across the drift tube is continuous (Fig. 4). 
One can assume the walls of the drift tubes infinitely 
thin so that the longitudinal integrated forces at rd–δr 
and at rd+δr exist, even for the smallest δr.  

inner
outer

drift
tube

gap

 
FIG. 4: paths just inside (r-δr) and just outside (r+δr) of the 
drift tube: continuous ‘transition’ for δr→0 

 
Comparing two such particle paths, there are two 

different types of segments for the Ez-integration along 
the path. Due to the continuity of Maxwell’s solutions, 
the integration along the gap segment of both paths 
will approach each other asymptotically as δr→0 for 
the longitudinal acceleration. Along the drift tubes the 
field becomes purely radial on both sides and Ez 
asymptotically disappears. This means that 
corresponding integral parts at rd–δr and at rd+δr 
asymptotically become identical for δr→0, the 
transition is continuous.  

It is impossible then that acceleration is (only) 
supported by synchronous waves, there must be other 
field patterns – inside, outside or on both sides of the 
drift tubes – that are capable of producing non-zero 
integrated interactions and which, in contrast to (2), 
have radial dependence. 

Equation (2) is a special case of (1), hence any 
counter-example to (2) also will contradict (1). This 



shows without doubt that (1) is void. 
 
V. RF acceleration 

The synchronous wave, as used to create a 
configuration like (1), has an Ez-component that is 
radially proportional to rm for the mth azimuthal mode, 
i.e. is constant for m=0. In contrast to functions such 
as J0(krr), there is no zero at any r. Therefore such a 
wave cannot exist in any (perfectly conducting) 
smooth tube where Ez=0 is required on the boundary. 
This apparently prevents RF acceleration in any 
accelerator with at least a single piece of smooth beam 
tube (i.e. in all of them). 

Without following up this odd observation it is in 
any case important to see how RF acceleration is 
realized without a synchronous wave. One example 
was already given with the drift-tube structure. An 
even more instructive example of on average 
synchronous fields will now be given. But to do so, the 
case of a single disk in an infinite, otherwise smooth 
tube, will be briefly shown first.  

 
V.1 Tube with single iris 

In Fig. 5 an (infinitely long) round tube is shown 
with a single iris, a disk with a central hole.  

 

a
b c

 
FIG. 5: Tube with single iris, containing a wave with 
incident amplitude a, reflected amplitude b and transmitted 
amplitude c. Energy conservation requires a2=b2+c2. 
 
It is known that an incident traveling wavef coming 
from -∞ along a smooth wave guide and hitting an 
‘obstacle’, only partly gets past the obstacle (the 
transmitted wave). Another part gets reflected, 
traveling back towards the source. ‘Far away’ from the 
obstacle, only pure traveling waves can be detected. 

 

a
b

c

φ  
FIG. 6: Amplitude constraint for incident (a), transmitted (c) 
and reflected (b) waves, defining the phase-jump angle φ. 
 
                                                 
f Above cut-off frequency; for simplicity the guide is 
assumed not to be ‘overmoded’, i.e. it carries only a single 
propagating mode of the chosen frequency. 

Due to energy conservation the sum of the squares 
of transmitted (c) and reflected (b) waves has to equal 
the square of the incident (a) wave amplitude, 
a2=b2+c2. This can be drawn in the complex plane with 
a ‘Thales circle’ as in Fig. 6. The transmitted wave is 
therefore necessarily phase shifted by an angle φ with 
respect to the incident wave. The value of φ cannot be 
predicted easily, it depends on the details of the 
problem (see cited comment in [7]) 

This phase-jump produces a field discontinuity at 
the open part of the iris, a priori incompatible with 
Maxwell’s equations. Again fringe fields are 
important. 

These fringe fields do not travel – they have to ‘sit 
tight’ around the obstacle, oscillating with ω – and 
have to vanish (rapidly) away from the obstacle – they 
are not present ‘far away’. This portrays just the type 
of ‘additional’ solutions that will be shown later. 
These solutions have only the apparent problem that 
they grow exponentially in at least one z-direction. 
However, this is not a problem in principle, they are 
only used locally in limited regions for field matching 
[7][8]. 

  
V.2 Disk loaded wave guide 

Assuming a non-synchronous wave traveling as 
cos(ω·t–kz·z) with the phase velocityg v=ω/kz>c, one 
might imagine ‘modulating’ this wave along the z-axis 
proportionally to cos(α·z) with some α. The product 
cos(ω·t-kz·z)·cos(α·z) can be split into the sum of two 
terms cos(ω·t-(kz±α)·z) – called the slow and fast 
wave in RF circles. By an adept choice of α one of 
them can be made to be synchronous with the particle. 
Of course such a hypothetical modulated wave does 
not comply with Maxwell’s equations as such. 

However, ways of modifying this basic idea to 
produce RF structures that accelerate vp=c particles 
perfectly well have been found by using non-
synchronous waves. One method has already been 
shown: by approximating the cos(α·z)-modulation 
with a step function, switching it on and off, in the 
drift tube structure. Another method consists of 
replacing the continuous cos-modulation by enforcing 
a repetitive phase-jump of this wave across an iris (see 
above), always by the same amount φ. Then in an 
infinite series of regularly spaced irises the field in the 
space between iris n and its next neighbor (forming 
cell n) has the global phase-factor exp(i·n·ψ). In this 
set-up the reflection of the back-reflected wave at the 
previous iris has also to be considered. φ and ψ are not 
equal since the phase-advance of the traveling wave 

                                                 
g No contradiction to relativity, v being the phase velocity; 
the field energy propagation (group) velocity u has to be and 
always is ≤ c 



from one iris to the next has also to be accounted for. 
Since n is (step-wise) proportional to z, this 
approximates on average a cos(α·z) modulation. The 
phase-jump at the iris produces a discontinuous field 
pattern, but, as previously shown, the superposition of 
fringe fields makes the total field comply with 
Maxwell’s equations and the boundary conditions. As 
a result the electric field in the cell is a maximum 
when the particle passes the cell centre, i.e. the wave is 
on average synchronous without being ‘the’ 
synchronous wave. In [11] such a structure has been 
analytically calculated using field matching in a 
periodic structure, essentially needing only to solve 
one matching problem. 

These accelerating structures, called ‘disk-loaded 
wave-guides’, are operated worldwide. One variant 
works in the well-known SLAC linac in the 2π/3 mode 
(the fields from cell to cell are phase-shifted by 2π/3) 
accelerating both vp=c electrons and positrons there. 

 
VI. Evanescent mode example 

One special evanescent mode pattern is well known: 
this is for the field penetrating a tube (e.g. close to a 
cavity) while exponentially decreasing in field strength 
as its frequency is below the cut-off frequency of the 
tube. This field cannot be described by Maxwellian 
traveling (nor classical standing) waves; it is an 
independent type of solution as shown above. 

As a concrete  example, the full description of such 
a field pattern (for simplicity calculated in Cartesian 
coordinates since exp and cos are better known and 
easier to manipulate than Jm and Im, especially with 
complex arguments), perfectly complying with 
Maxwell’s equations is shown in detail in Appendix 
A2. It has the Ez component (all parameters real) 

    Ez = exp(−β ⋅ z −δ ⋅ x) cos(α ⋅ z + γ ⋅ x) ⋅cos(ω ⋅ t)   (5) 
and evidently cannot be expressed (for β≠0) as any 
combination of traveling waves due to the exponential 
exp(-β·z) factor (real β).  
For x=0, as an ‘on axis’ example, the Ez field becomes 

    Ez = exp(−β ⋅ z) ⋅cos(α ⋅ z) ⋅cos(ω ⋅ t)        (6) 
Then a relativistic particle moving into the positive 

infinite half-space from z=0 to z=+∞ as z=c·t feels an 
integrated force proportional to 

    
f|| = exp(−β ⋅ z) cos(α ⋅ z) cos(ωz / c)dz

0

+∞

∫    (7a) 

identical to 

    
f|| = β / 2

β2 + (α − ω / c)2
+ β / 2

β2 + (α + ω / c)2
   (7b) 

Obviously for β≠0 (see later) f|| is never equal to 
zero. It has a maximum for (not precisely) α=ω/c, i.e. 

when the oscillatory part is (about) synchronoush. But 
it is also interesting to observe that all non-
synchronous parameter configurations contribute; the 
farther off from synchronism they are, the less they 
contribute. This means that the “averaging away” of 
non-synchronous components does not work under 
most conditions, only for β=0. If δ=0 at the same time, 
it is a ‘classical’ traveling wave and then β→0, forcing 
α→ω/c due to the frequency constraint. In addition f|| 
becomes a delta-function, infinitely high at α=±ω/c 
but also infinitely sharp. For β=0 the above field-
pattern has ‘degenerated’ into a ‘classical’ standing 
wave that can then be ‘decomposed’ into two traveling 
waves, which cannot be done for any field with β≠0.  

This shows that ‘classical’ traveling waves are only 
a very special limiting case of the general set of 
solutions. 

A very important contribution from the ‘evanescent 
modes’ was seen in the disk-loaded wave-guide. There 
the direct contribution to acceleration may be small, 
but they allow phase corrections to the main wave. 
‘Portions’ of a non-synchronous wave can accelerate 
relatively efficiently over a short (cell-) length; hence 
synchronicity is locally not very essential. The phase 
of the main wave is then ‘readjusted’ over a small 
distance ‘around each obstacle’ (the iris) so that on 
average the overall field always appears synchronous 
without actually being ‘the’ synchronous wave, the 
latter requiring constant phase and amplitude from z=–
∞ to z=+∞. Such a phase-shift cannot be realized by 
pure traveling waves alone. To fulfill Maxwell’s 
equations ‘evanescent modes’ have to be mixed in 
around the obstacle. 

The same is true for an isolated cavity on an infinite 
beam tube. ‘Evanescent modes’ allow part of a double 
traveling (i.e. a standing) wave in the main cavity 
volume to be “clipped off” while respecting Maxwell’s 
equations. Then the integral over Ez along somewhat 
more than the cavity length determines the full 
accelerating voltage and the question as to what the 
behavior of a hypothetical wave far away has to do 
with the acceleration, needs not be asked anymore. 
 
VII. Analysis of some ‘proofs’ 

The counter-example in section IV is in principle 
sufficient to demonstrate that any ‘proof ‘of (1) must 
be flawed in one way or the other. But it is more 
satisfactory to determine the exact location of the 
weak points in the chain of arguments. 

Therefore ‘proofs’ for (1) or related statements that 
have come to the attention of the author of this paper 
have been examined. It could be shown that they are 
all not generally valid for structures with non-constant 
                                                 
h There is another ‘synchronous’ field for α=-ω/c, i.e. for a 
particle moving with c in opposite direction 



cross-sections. The following list of ‘proofs’ is 
probably not exhaustive, but it is expected that others 
would go along similar lines of thought. In any case 
the counter-example given above also guarantees that 
others cannot hold. 

One consideration is important and might have 
already been said in the introduction. Since nature 
does not supply a charged particle without mass, due 
to relativity no electrically accelerated particle can 
ever reach v=c. Therefore any physical relation has to 
be demonstrated for v<c first, including its Lorentz 
invariance, e.g. when allowing an observer to sit on 
the trailing particle. If then there exists a relation such 
that the precise v<c cases converge as v→c, it can be 
called ‘the v=c solution’. Then it is unimportant if, 
say, the particle is 10-5·c or 10-6·c away from c, the 
‘v=c solution’ is precise enough. However, 
demonstrating relations by simply fixing β=1 does not 
allow Lorentz invariance to be verified and 
convergence as v→c for the proposed solution cannot 
be demonstrated - there might be divergence. 
 
VII.1 Vacc calculation in cavities 

Probably the oldest paper following this line of 
thought seems to be from 1983 [4]. There the intention 
in the cavity field-calculations is to avoid integration 
along large lengths of the cut-off tube with low field 
when calculating the on-axis Vacc  (or only slightly off 
axis for m > 0) by using the fact that Ez=0 on the cut-
off tube wall and only integrating over the actual 
cavity part at this cut-off radius. Then, exploiting the 
supposed, simple, rm dependence of these longitudinal 
integrals, yields the desired results. 

But in the appendix of [4] the rm dependence of 
mode m is ‘derived’ by supposing that only 
contributions from traveling waves with k(ω)βc=ω in 
the asymptotic limit as γ→∞, (β→1), i.e. synchronous 
waves, are needed. 

This means that, especially in cavities where fringe-
fields exist at cavity-tube transitions, the essential 
evanescent modes are excluded thus imposing rm ‘by 
definition’. Therefore this method is not correct and 
should not be applied for precise results. 

Then also the results derived in papers such as [12], 
which assume the radial dependence (citing [4]), seem 
questionable since elaborate calculations are based on 
wrong fundamental assumptions. 
 
VII.2 Using ‘Generalized Integration 
Contour’ 
 

In [3] it is claimedi that using a method called the 
‘Generalized Integration Contour’ it can be shown that 

                                                 
i Appendix 3.A, part (3.A.1) 

for the m=0 mode the longitudinal energy gain is 
independent of the radial coordinate where the 
integration was done. 

For the reader’s convenience the essential part of the 
chain of arguments as given in [3] is repeated and a 
few comments are added on the way. 

The longitudinal ‘induced voltage per driving charge 
q’ is 

  
G|| (r, s) = − 1

q
dz  Ez (r, z, t = (s + z) / v)

−∞

+∞
∫       (8) 

All fields are the superposition of a drive field 
(‘leading particle’) and radiated fields; one considers 
here only the latter field (the leading particle with its 
‘field-disk’ is gone when the trailing one arrives). 
Maxwell’s (vacuum) equations yieldj 

  

curlθ (E) = ∂Er
∂z

− ∂Ez
∂r

= − ∂Bθ
∂t

                     ⇒ ∂Ez
∂r

= ∂Er
∂z

+ ∂Bθ
∂t

            (9) 

From the definition of the ‘total derivative’ 

 
  
d
dz

= ∂
∂z

+ 1
v

∂
∂t

                         (10) 

in the original text [3], equation (12) is found directly. 
Here some intermediate steps in this reasoning are 
added. Equation (10) is applied as 

  
∂Er
∂z

= dEr
dz

− 1
v

∂Er
∂t

                     (11a) 

  
∂Bθ
∂z

= dBθ
dz

− 1
v

∂Bθ
∂t

 ⇒  ∂Bθ
∂t

= v dBθ
dz

− v ∂Bθ
∂z

   (11b) 

and is injected into (9) to yield 

  
∂Ez
∂r

= d
dz

(Er + vBθ ) − 1
v

∂Er
∂t

− v ∂Bθ
∂z

         (12) 

In the original text [3] from Maxwell’s (vacuum) 
equation, 

  
curlr(B) = 1

r
∂Bz

∂θ
− ∂Bθ

∂z
= ε0μ0

∂Er

∂t
= 1

c2
∂Er

∂t
      (13) 

 and without any further comment  

  
∂Er
∂t

 =  − c2 ⋅ ∂Bθ
∂z

                   (14) 

is concluded; hence implicitly it is assumed that 

  
∂Bz
∂θ

 ≡  0                                  (15) 

This is in fact justified for m=0 since all field 
components, including Bz, are independent of θ. 

Injecting (14) into (12) yields 

  

∂Ez

∂r
= d

dz
(Er + vBθ ) − 1

v
∂Er

∂t
(1− v2

c2
)         (16a) 

  

∂Ez

∂r
=  d

dz
(Er + vBθ ) − 1

vγ 2
∂Er

∂t
          (16b) 

For ultra-relativistic speeds v→c, γ is very large; 
                                                 
j As usual (r,θ,z) is defined right-handed: fr=e(Er-v·Bθ), 
curlθ(Α)=dAr/dz–dAz/dr, and curlr(Α)=1/r·dAz/dθ–dAθ/dz  



hence the 1/ γ2-term can be neglected, i.e. 

 
    
∂Ez
∂r

= d
dz

(Er + vBθ )                            (17) 

and then 

    

∂
∂r

G|| (r, s) = − 1
q

dz  ∂Ez

∂r
(r, z, t = (s + z) / v)

−∞

+∞
∫ =

             − 1
q

(Er + vBθ ) |z=−∞
z= +∞

  (18) 

Closing argument: the radiated fields must vanish 
somewhere far away, imposing     ∂G /∂r = 0 and hence 
the longitudinal force is independent of the radial 
position, 

    
∂
∂r

G|| (r, s)  =  0  ⇒   G|| (r, s)  =  const(s)    (19) 

which finishes the text in [3] concerning the case m=0.  
But in the following parts of [3] other derivations 

are made that stand and fall by the validity of (18) and 
(19). 

It can be seen very rapidly that the above ‘proof’ 
cannot be correct: (15) is a necessary condition that 
seems to limit the validity to m=0 modes only. 
However, all TM modes (as the name Transverse 
Magnetic expresses) have     Bz ≡ 0 and as a 
consequence     ∂Bz / dθ ≡ 0, hence the ‘proof’ as 
presented will not only pass for m=0 modes but for all 
fields with an integrated beam interaction. TE modes 
are irrelevant, having no integrated beam interaction. 
Then the chain of arguments given above would prove 
that all longitudinal wakes are independent of r, in 
clear contradiction even to statements made elsewhere 
in the same book [3]. Also according to PW, there 
could never be an electromagnetic field causing a 
transverse momentum kick, clearly in disagreement 
with operational RF particle separators. 

In fact, equation (16b) is perfectly correct. However, 
it is not justified to neglect the second right-hand term 
for v→c. This term is a product of two factors, 1/γ2 
and dEr/dt. But, as will be shown in the following, the 
second factor generally scales as γ2 when v→c so that 
the product remains asymptotically constant and 
cannot be neglected as claimed in [3]. 

To show this, the same equations as in [3] – 
reproduced in (9) to (19) – are used. Combining (9) 
and (11a) yields  

∂Ez

∂r
−

dEr

dz
= −

1
v

∂Er

∂t
+

∂Bθ
∂t

                   (20) 

It can be rearranged and when d/dt is expressed as 
v·d/ds, one obtains 

  
∂Ez
∂r

= dEr
dz

− ∂
∂s

Er − v ⋅ Bθ( )                   (21) 

which is in fact nothing else than the PW theorem, 
fr/e=Er-v·Bθ being the transverse Lorentz force per 
charge (all modes included, TM and TE). Then by 
integrating over (the ‘absolute’) z and considering that 
fields ‘disappear far away’, this results in 

∂
∂r

G|| = 1
q

Ez −∞

−∞
− 1

qe
∂
∂s

fr
−∞

+∞
∫ dz = − 1

qe
∂Fr

∂s
≠ 0  (22) 

Therefore in general 

 
  
∂
∂r

G|| (r, s)  ≠  0  ⇒   G|| (r, s)  ≠  const(s)    (23) 

disproving (19) and with it the results of the 
‘generalized integration contour’ method. 

The erroneous conclusion that (19) is always zero 
comes from the fact that the ratio of transverse to 
longitudinal fields increases as γ2 for fields that have 
an integrated beam interaction. This can be seen as 
follows: Combining (14) – hence considering only TM 
modes, TE having no beam interaction – and (11b) one 
gets 

−v
dBθ
dz

 =  
v

c 2
∂Er

∂t
−

∂Bθ
∂t

                   (24) 

Now one can add chosen multiples of (20) and (24). 
Simply adding (20) and (24) cancels the Bθ time 
derivative term yielding precisely (16b), i.e. 

  

∂Ez

∂r
=  d

dz
(Er + vBθ ) − 1

vγ 2
∂Er

∂t
            (25) 

Adding (20) and c2/v2 times (24) cancels the Er time 
derivative term yielding 

  

∂Ez
∂r

= d
dz

Er + c2

v
Bθ

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ −

c2

v2γ 2
∂Bθ
∂t

             (26) 

and in both cases one is tempted to the same wrong 
conclusion that the second right hand term disappears 
for v→c, hence γ→∞. 

Equations (21), (25) and (26) all have the same left 
hand side and on the right hand side in all three cases 
an absolute derivative, with respect to z, of a linear 
combination of E and B, these fields being assumed to 
disappear ‘far away’. Then the infinite integral over 
the three remaining right hand terms must be equal  

  
dz

−∞

+∞

∫ ∂
∂t

Er − v ⋅ Bθ( )= 1
γ 2

dz
−∞

+∞

∫ ∂Er
∂t

= 1
γ 2

c2

v
dz

−∞

+∞

∫ ∂Bθ
∂t

 

(27) 
hence the transverse fields Er and Bθ scale (on 

average) as γ2. For Er–v·Bθ, which gives the deflecting 
Lorentz force, both contributions mutually cancel 
more and more in such a manner that the total 
integrated deflection asymptotically approaches a 
constant.  

This also shows up in a simple example with 
traveling waves with phase-velocity v while v→c. In 
Cartesian coordinates the usual traveling wave 
solutions are presented as products of factors of 
angular functions (sin or cos) of kxx, kyy and ωt-kzz. 
Since div(E)=0, the amplitudes of TM modes with unit 
amplitude for the longitudinal Ez-field (TE has Ez=0) 
behave as 

  Ex  ∝  − kxk z /(kx
2 + k y

2)                  (28a) 



    Ey  ∝  − k yk z /(kx
2 + k y

2)                  (28b) 

    Ez  ∝  1                                           (28c) 

    Bx  ∝  − k yω /(kx
2 + k y

2) / c2               (29a) 

    By  ∝  − kxω /(kx
2 + k y

2) / c2               (29a) 

    Bz  =  0                                           (29c) 
and the specific Lorentz force fx/e=(Ex-vBy) 
becomes

    f x / e  =  Ex − vBy  ∝  (vω / c2 − k z )kx /(kx
2 + k y

2)   (30) 
(similar for fy/e). The frequency constraint equivalent 
to (4) in Cartesian coordinates is 

    (ω / c)2  =  kx
2  +  k y

2  +  kz
2                      (31) 

Equation (31) allows the denominators above to be 
expressed by kz and ω and enforcing the phase 
velocity v to be kz =ω/v one gets 

−1
kx

2 + k y
2

= −1
ω2 / c2 − kz

2
= v2 / ω2

1− v2 / c2
= γ 2 v2

ω2
   (32) 

and 

    

vω / c2 − kz

kx
2 + k y

2
= −γ 2 v

ω
(1− v2 / c2) = − v

ω
     (33) 

Then it becomes clear that all transverse fields 
increase as γ2 as v→c while the Lorentz force remains 
constant. 

This scaling is not in contradiction to the relativistic 
transformation laws where the longitudinal fields (in 
the direction of movement) remain constant while 
transverse fields scale as γ, not γ2. In fact the 
relativistic transformation considers a wave to have 
frozen properties when seen from different moving 
systems while a wave with changing (phase velocity) 
conditions is observed from the fixed laboratory 
system. 

There is one problem for these traveling waves with 
v<c: kx and ky have to be imaginary to fulfill the 
frequency constraint (30) and fields (including Ez) 
permanently grow in the transverse direction, hence 
there is no zero in Ez possible on a closed tube 
boundary. These are not ‘classical’ traveling waves 
which can  be used on their own in a closed tube but 
only partial solutions for field matching. 

 
VII.3 Using curl(F) and div(F) 

In [2], chapter 1.2 and 1.3, a chain of arguments is 
given to demonstrate the general rm dependence of the 
mth multipole. Here the demonstration in [2] is 
essentially repeated but a few comments are given on 
the way. 

 The local Lorentz force for a particle with speed βc 
in the z-direction is 

      
r 
f  =  e ⋅

r 
E  +  β ⋅ c ⋅ ö z ×

r 
B ( )                (34) 

One can calculate curl and div of f by exploiting 

Maxwell’s vacuum equations (a driving charge is gone 
when the trailing particle arrives), resulting in 

   
curl(

r 
f )  =  − e ⋅ 1

c
∂
∂t

 +  β ⋅ ∂
∂z

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

r 
B                    (35) 

   
div(

r 
f )  =  − e ⋅ β

c
∂Ez
∂t

                           (36) 

The momentum kick for such a (trailing) particle a 
distance D behind the leading particle is 

   
Δr p (x, y,D)  =  dt ⋅ f (x, y,D + βct, t)

−∞

+∞
∫           (37) 

Taking the curl of (37) while expressing dz by dD, 
exchanging integration and curl and exploiting (35) 
leads to 

curlD (Δ
r p (x, y,D))  =  

   − e dt ⋅ 1
c

∂
∂t

 +  β ⋅ ∂
∂z

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
r 
B (x, y, z, t)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

−∞

+∞

∫
z= D +βct

 (38) 

where the curlD operator takes differentiation with 
respect to D instead of z as for the standard curl. 
Equation (38) can be integrated immediately as 

   
curlD (Δr p (x, y,D))  =  − e

c
r 
B (x, y,D + βct, t) |t=−∞

t= +∞  (39) 

The right hand side either absolutely vanishes, e.g. 
for an isolated cavity, or for a periodic structure it 
remains bound while Δp increases proportionally to 
the integration path, i.e. the right hand side relatively 
vanishes. This results in any case in the statement 

   curlD (Δr p (x, y,D))  =  0                  (40) 
In fact this is a – perhaps unfamiliar – way to write 

the PW theorem. As is well known, it is exactly valid 
for all v, for any v as close as desired to c. 

In components, writing the integrated forces Fr 
instead of Δpr (z and θ similar) in cylindrical 
coordinates, this means 

  
1
r

∂Fz

∂Θ
− ∂FΘ

∂D
 =  0                  (41a) 

  
∂Fr

∂D
− ∂Fz

∂r
 =   0                 (41b) 

  

1
r

∂ rFΘ( )
∂r

− ∂Fr

∂Θ

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟  =  0                 (41c) 

This system does not yet impose any power-of-r 
dependence. In fact one can see that for any given 
azimuthal mode number m, a partial solution with any 
j ≥ m, in particular j≠m, as 

  Fz  =   r j ⋅ ′ W j(D) ⋅cos(m ⋅θ )        (42a) 

  Fr  =   j ⋅r j−1 ⋅Wj(D) ⋅cos(m ⋅θ )       (42b) 

  Fθ  =   − m ⋅r j−1 ⋅Wj(D) ⋅sin(m ⋅θ )        (42c) 
fulfills (41). Therefore for a given m many terms with 
different j can be superimposed – e.g. to form a Bessel 
function as Jm(krr) – still fulfilling the curl(F)=0 
condition, i.e. PW.  

Explicitly in cylindrical coordinates, (36) becomes 



    
1
r

∂(rf r )
∂r

+ 1
r

∂fΘ

∂Θ
 + ∂f z

∂z
=  div( f )  =  − eβ

c
∂Ez

∂t
 (43) 

In the original text [2] β is immediately set equal to 
1 but it is important to keep it a free variable. One can 
calculate the integrated forces and replacing fz by its 
definition e·Ez yields 

    

1
r

∂(rFr )
∂r

+ 1
r

∂FΘ

∂Θ
 =  

       − e dt ⋅ β
c

∂
∂t

 +  ∂
∂z

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ Ez

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

−∞

+∞

∫
z= D +βct

       (44) 

Here [2] concludes – with β immediately replaced 
by 1, fixing   v ≡ c  from the beginning – that (see 
exercise 2, middle line of eq. 1.18) the right hand side 
of (44) would always be zero. If this would be true, 
(44) together with (42) would in fact impose j2=m2 and 
with it the claimed canonical configuration (1). 

The right hand side of (44) disappears 
asymptotically for traveling waves with phase velocity 
identical to v=β·c, i.e. fields proportional to cos(ωt–
ωz/(β·c)). Under these conditions where z and t enter 
as the common parameter t-z/(β·c), the integrand of 
(44) is proportional to 

    

β ⋅ω
c

− ω
β ⋅ c

= ω
βc

(1− β)2 = ω
βc

1
γ 2

            (45) 

which then tends to zero as 1/γ2 while v→c.  
However, it was already stated before that the 

deviations from the canonical form (1) are due to the 
non-traveling wave fields necessarily present in non-
smooth structures where t and z do not enter in the 
above manner.  

In the integral (38) β is the factor of the derivative 
with respect to z and therefore the absolute derivative 
of B(x,y,z=D+βct,t) is identical to the integrand of 
(38). Intrinsically this respects the particle movement 
constraint z=D+βct and hence the above B is a 
primitive function. Then the integral is the difference 
of this B at the limit of the integration range and since 
fields can be assumed to disappear far away, the 
integral is in fact equal to zero. This (i.e. PW) is 
precisely – not only asymptotically for v→c – the case 
for any Maxwellian field and any velocity v=βc. 

In contrast to this, in (44) β is the factor of the 
derivative with respect to t and the same argument 
cannot be used anymore: E(x,y,z=D+βct,t) is not a 
primitive function with respect to t. The function 
β/c·E(x,y,z=D+c/βt,t) seems to be a primitive function 
but it does not respect the necessary movement 
constraint z=D+βct. Thus, even if E vanishes at the 
end of the integration range this does not tell us 
anything about the integral in (44). When z and t enter 
as completely separate variables, not as the common 
parameter t-z/(β·c) as for traveling waves, nothing can 
be concluded on the asymptotic behavior of the 
integral for v→c. 

Therefore the chain of arguments presented in [2] 
does not conclusively show that for all Maxwellian 
fields (44) is – or for v→c tends towards – zero and 
hence the canonical configuration (1) in non-smooth 
structures was not proven. 

 
VIII. The difference 

Once the non-validity of (1) is accepted, it is 
necessary to study how the ‘new’ reality compares to 
the ‘old’ one, are there large differences and if yes, 
where. 

The configuration (1) is restricted to only the lowest 
order term in r, i.e. rm for the mth multipole, claiming 
that all higher terms are in principal absent. Since it is 
evident now that these terms are generally not absent, 
one can use (1) close to the axis as an approximation 
to the true longitudinal integrated wake-force. This is 
even better than one could hope for, under the 
circumstances: Bessel-Functions have only non-zero 
coefficients each second power. Therefore (1) can be 
considered as a 1st order approximation, neglecting the 
2nd and higher order coefficients.  

However, there is one point of concern. In (1) the 2nd 
order term of the monopole mode was considered to be 
always exactly zero. For the longitudinal wakes this 
will generally not make a big difference; but things are 
different for the transverse integrated forces. 

PW states that the radial momentum kick is 
proportional to the derivative of the longitudinal forces 
with respect to the radial position. Since each 
monopole term has a true parabolic shape as 1-α·r2, 
this creates a transverse momentum kick proportional 
to 2α·r; the constant (main) longitudinal term is 
‘differentiated away’. In (1) the coefficient α was 
forced to be zero but in reality resulting statements 
such as: “in a round structure an on-axis beam does 
not excite transverse momentum kick (even) for off-
axis trailing particles” do not hold anymore.  

Also for the so-called ‘quadrupolar wakes’ it is 
assumed that with certain geometrical symmetries (e.g. 
up-down or left-right symmetries) and an x-kick 
proportional to the x-deviation with a proportionality 
constant D, i.e. Δpx = D·x, then the y-kick is 
proportional to the same constant with opposite sign. 
i.e. Δpy = –D·y. In reality the 2nd order term of the 
monopole wake adds to this, resulting in 
  Δpx = (2α + D) ⋅ x  and   Δpy = (2α − D) ⋅ x , hence the 
supposed symmetry configuration of the wakes is not 
true and may lead to wrong results when enforcing it 
by a constrained fit. 

Finally, also the main LHC RF cavities, to very 
good approximation round, will produce a radial kick 
for off-axis particles. This is also true for monopole 
HOMs in these cavities. 



α is generally not very large, a coarse estimate is 
that in a cavity of radius R only 1-α·R2 becomes zero 
(for the lowest modes). Therefore in a numerical 
calculation the effect may be difficult to discover from 
longitudinal forces when applying PW and only 
testing with small offsets r. However, by direct 
integration of the radial forces from Er and v·Bθ the 
numerical problem of the ‘difference of large 
numbers’ will disappear and the radial kick will 
become clearly visible. 

For dipole wakes the first ‘new’ term is proportional 
to r3 and its derivative with respect to r proportional to 
r2. Therefore these effects are already in the non-linear 
range and are often neglected. However a treatment 
taking non-linear terms into account should also 
include these. 

 
IX. Conclusions 

It has been shown that there is an infinity of field 
patterns that have non-zero longitudinal integrated 
force, each one having its own configuration in (r,θ). 
Therefore the claim that only ‘the’ synchronous wave 
can accelerate vp=c particles, hence imposing its 
unique (r,θ) behavior, is vain. The existence of a large 
number of modes, not accounted for in (1), capable of 
producing integrated wakes was shown. 

Finally any other description which always excludes 
these other evanescent field patterns cannot exist: a 
clear counter example, contradicting (2), and with it 
(1), was shown. 

Last, but not least, several known ‘proofs’ for (1) 
were shown to be erroneous for non-smooth structures, 

Therefore the radial configuration of the true wakes 
can only be determined by considering all details of 
the boundary and is not equal to a general function 
independent of these details.  

This means that the configuration (1) is too rigid and 
should be replaced by the softer conditions  

      
ds ⋅

r 
F ||

(m)

−∞

+∞
∫ =− e ⋅ cos(mΘ) ⋅ Im ′ W m,n (z) ⋅ r m +2n

n=0

∞

∑  (46a) 

      

ds 
r 
F ⊥

(m)

−∞

∞
∫ =− eIm ⋅ (m + 2n) ⋅ Wm,n (z) ⋅ r m +2n-1

n=0

∞
∑

       ⋅ (ö r ⋅ cos(mΘ) − ö Θ ⋅ sin(mΘ))
 

(46b) 
exploiting the fact that Jm(x) has the lowest power xm 
and a non-zero coefficient for only each second power. 

The multipoles m>2 are normally neglected, the 
second non-zero term for m=1 is proportional r3, i.e. 
delivers r2-terms for the transverse force, which is 
generally also neglected. 

The essential difference between (1) and the 
corrected form (46) is therefore the r2 term of the 
monopole mode. This means that, in contrast to (1), in 
reality monopoles also create a transverse momentum 

kick proportional to r, absent in (1), not only the 
quadropole wakes (lowest term for m=2). 

Therefore all conclusions based on the configuration 
(1) should be revised and recalculated, respecting the 
true actual boundary conditions. 

It should also be considered that the numerically 
simplified integration of Vacc at the level of the cut-off 
tube radius of a cavity is not truly identical to the – 
correct – axial integration, even if the difference is 
expected to be small. 

Furthermore, the application of (1) to constrain wake 
components in the data analysis of impedance 
measurements of objects should be revised. 

Practically for LHC this means, amongst others, that 
round objects with longitudinally changing cross-
section (any diameter changes in the tube, even if 
cylindrically symmetric) can also produce transverse 
momentum kicks for off-axis trailing particles. The 
same is true for the round accelerating RF cavities. 

This may not necessarily all be bad, e.g. transverse 
Landau damping might be increased, but the effects 
should be verified considering the true full component 
geometry. 
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Appendix 

Several textbooks on electro-magnetism and RF 
show the solutions to Maxwell’s equation in 
cylindrical co-ordinates, considerations on plane 
waves, field matching and Bessel-functions in exact 
detail (see e.g. [6][7][8][13][14][15]). For the reader’s 
convenience some of these facts have been compiled 
in this appendix. The style is kept heuristic. 

 
A1. Solutions of Maxwell’s equations in 
cylinder coordinates 

 
In all accelerator problems there is a special axis, the 

beam direction. Therefore, the chosen co-ordinate 



system should reflect this. Furthermore, round objects 
are often important and hence a cylindrical coordinate 
system is the obvious (but not necessary) choice. 

The wave equation (in vacuum) appears as a double 
application of the curl differential operator on a chosen 
field component (either E or H), i.e. 

      
curl(curl(

r 
E ))  =  1

c2
∂2 r 

E 
∂t2

                      (A1) 

Generally the double curl operator contains many 
mixed derivatives. Since in vacuum div(E)=0, one may 
subtract grad(div(E)) from (A1) yielding a generally 
simpler representation 

      
ΔE =  curl(curl(

r 
E )) − grad(div(

r 
E ))  =  1

c2
∂2 r 

E 
∂t2

  (A2) 

 To have a truly physical solution it must always be 
guaranteed separately that div(E)=0 holds. 

Writing (A2) in cylindrical components one obtains 
for Ez alone the equation 
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Er and Eθ are mixed in the two equations 

    

1
r

∂
∂r

r ∂Er

∂r

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −

Er

r2
+ 1

r2
∂2Er

∂θ 2
+ ∂2Er

∂z2

      − 2
r2

∂Eθ
∂θ

 =  1
c2

∂2Er

∂t2

           (A4) 

 and  
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∂2Eθ
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          (A5) 

(A3) is solved in the standard way, writing Ez as the 
product of four independent functions of the four 
variables r, θ, z and t. As in Cartesian coordinates the t 
and z-dependence are written as cos(ωt) and cos(kzz) – 
where cos → sin yields three more sets of linearly 
independent solutions. The θ-dependence is expressed 
as cos(mθ) (sin(mθ) yielding another set of linearly 
independent functions) and due to the 2π-symmetry of 
space m has to be integer. With the, as yet unknown, 
radial function f(r) and the amplitude Az this yields the 
expression 

    Ez = Az ⋅ f (r) ⋅cos(mθ ) ⋅cos(kz z) ⋅cos(ω ⋅ t)    (A6) 
Injecting (A6) into (A3) results in 

    

1
r

∂
∂r

r ∂f (r)
∂r
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⎝ 
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ω2
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r2
− kz

2
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⎝ 
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⎠ 
⎟ ⎟ f (r)  =  0      (A7) 

where the common, globally non-zero, factor 
Azcos(mθ)cos(kzz)cos(ωt) has been left out. Writing 
f(r) as y(x=krr) with an as yet undefined parameter kr 
yields 

  

∂2 y(x)
∂x2

+ 1
x

∂y(x)
∂x

+ (ω / c)2 − k z
2

kr
2

− m2

x2
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⎝ 
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⎞ 

⎠ 
⎟ ⎟  y(x) = 0 (A8) 

If the first part in the large bracket is equal to 1, i.e. 
kr

2  +  kz
2  =  (ω / c)2                 (A9) 

(A8) becomes the well-known Bessel differential 
equation 

  

∂2 y(x)
∂x2

+ 1
x

∂y(x)
∂x

+ 1− m2

x2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  y(x) = 0      (A10) 

with solutions given by the two independent functions 
Jm(x) and Ym(x). Y-type solutions will be considered 
later. The fields are then a linear combination of 
solutions as (leaving away cos(ω t)) 

  Ez = Az ⋅ Jm(krr) ⋅cos(mθ ) ⋅cos(k z z)      (A11) 
where the frequency constraint (A9) always has to be 
respected. 
Without making explicit calculations, the 
corresponding solutions of (A2) and (A3) are of the 
type 

  Er = − ö A ⋅ ′ J m(krr) ⋅cos(mθ ) ⋅sin(k z z)      (A12) 

  Eθ = ö A ⋅(m / r)Jm(krr) ⋅sin(mθ ) ⋅sin(k z z)      (A13) 
plus another independent set of the type 

  Er = ö C ⋅ (m / r)Jm(krr) ⋅cos(mθ ) ⋅sin(kz z)      (A14) 

  Eθ = − ö C ⋅ ′ J m(krr) ⋅sin(mθ ) ⋅sin(kz z)      (A15) 
The amplitude coefficients are not independent, the 

condition div(E) has to be fulfilled. Therefore there 
exist only two linearly independent 3D solutions. It is 
a convention to express these solutions in a standard 
form where one solution has no Ez-field (C 
coefficients in (A14) and (A15)) called TE-mode 
(Transverse Electric) or H-mode. These, lacking Ez, do 
not interact longitudinally with the beam and then 
from PW also do not interact transversely. 

The other combination has no longitudinal H field, 
and is called the TM-mode (Transverse Magnetic) or 
E-mode. (A-coefficients in (A11),(A12) and (A13)). 
Applying the condition div(E)=0 one gets the TM 
mode solutions with a common amplitude factor A - 
all oscillating as cos(ωt). 

  Er = − A ⋅ kz ⋅ kr ⋅ ′ J m(krr) ⋅cos(mθ ) ⋅sin(kz z)     (A16) 

  Eθ = A ⋅ kz ⋅ (m / r)Jm(krr) ⋅sin(mθ ) ⋅sin(kz z)     (A17) 

  Ez = A ⋅ kr
2 ⋅ Jm(krr) ⋅cos(mθ ) ⋅cos(kz z)        (A18) 

A completely equivalent set exists with Ym instead 
of Jm (the linear combinations J±i·Y are called Hankel-
functions).  The functions Ym all diverge at the axis 
r=0; their coefficient is zero for free waves in vacuum 
in situations lacking a central conductor. With a 
central conductor, a linear combination of Jm and Ym 
can be arranged such that for all z and θ (in a smooth 
pipe) Ez is zero as well on the inner as on the outer 
conductor. The circular coaxial line, technically very 
important as the coaxial cable, carries the limiting so-
called TEM mode, i.e. E and H perpendicular to the 



propagation, as in a light ray. Then the coefficients of 
J0 and J0’ are zero, as well as the one of Y0, describing 
Ez, while the only remaining Y0

’-term, describing Er, 
‘degenerates asymptotically’ to become 1/r. 
Exceptionally, the phase and group velocity are equal 
to c for this mode (if no filling material with ε>1 is 
used). 

The solutions described above have a spatial field 
map E(r,θ,z) that is oscillating coherently with cos(ωt), 
i.e. at one instant the field is maximum everywhere, 
Tosc/4 later it is zero everywhere (and the H-field is 
maximum), a standing wave. The double factors 

    cos(k z z) ⋅cos(ω ⋅ t)                  (A19) 
can formally be written as a linear combination of 

    cos(ω ⋅ t ± k z z)                   (A20) 
and solutions appear as the superposition of traveling 
waves, formally written as 

    Ez = Az ⋅ f (r) ⋅cos(mθ ) ⋅cos(ω ⋅ t − kz z)       (A21) 
It seems that the same field pattern can be found Δt 
later at a location shifted by Δz=ω/kzΔt, i.e. the wave 
seems to move with the (phase) velocity v=ω/kz. 
However, for non-decaying solutions ω is real and this 
interpretation of (A19) as a traveling wave only holds 
for real kz, otherwise there is no traveling wave! 

An essential point is that for all solutions kr, kz and 
ω are constrained by (A9) (identical to (4)) in order to 
be solution to Maxwell’s equations. Any solution for a 
set (kr,kz,ω) is linearly independent from all the other 
ones.  

The solutions with real (kr,kz,ω) can describe all 
waves in smooth tubes. Therefore complex parameters 
are often neglected, but for non-smooth tubes the full 
solutions are essential. 

For non-decaying solutions ω has to remain real. J 
and cos can be presented as a power series convergent 
for any argument, hence they are also defined for 
complex arguments. Injecting the complex parameter k 
e.g. in (A2), creates a complex field. When the 
frequency constraint (A5) is respected, this complex 
field reproduces itself with a (real) scaling factor 
(ω/c)2. Then the real and imaginary part are two new 
independent solutions of Maxwell’s equations in 
cylindrical coordinates. But, as shown above, for non-
real kz they cannot be ‘split’ into traveling waves as is 
the case for the solutions with purely real kz. 

For complex kr and kz but real ω, the constraint 
becomes 

kr,Re ⋅ kr,Im + kz,Re ⋅ kz,Im = 0      (A22) 

    kr,Re
2 − kr,Im

2 + kz,Re
2 − kz,Im

2 = (ω / c)2       (A23) 
These solutions can be classified as the ‘evanescent 

mode’ as soon as kz has a non-vanishing imaginary 
part. 

The two limiting cases for purely real frequency 
ω will now be briefly discussed. 

The first case has imaginary kr≠0 but real kz. The 

fact that kz is purely real means that these solutions 
still have standing/traveling wave character. The 
frequency condition (i·kr→kr’) becomes 

  (ω / c)2  =  k z
2  −  ′ k r

2           (A24) 
and Jm(x) has to be replaced by its imaginary 
equivalent, the modified Bessel function Im(x) defined 
by 

  I m(x) = i−mJm(i ⋅ x)         (A25) 
 Im is always real. All Im grow indefinitely with 

exponential character and have no zero except at x=0 
for m>0. Hence they are not global solutions, valid 
everywhere, but can be used in the context of field 
matching [7][8]. For completeness, the imaginary 
equivalent of Ym is the 2nd order modified Bessel-
function, usually written as Km. 

The second case uses imaginary kz but real kr. Then 
cos(kz·z) and sin(kz·z) become cosh(kz·z) and 
sinh(kz·z), that may be expressed by exp(±kz·z). The 
traveling wave character is lost for this type of 
solutions; fields are essentially confined in space 
where they oscillate coherently, i.e. at one instance 
there is maximum electric (zero magnetic) field 
everywhere, Tosc/4 later there is zero electric 
(maximum magnetic) field everywhere. The frequency 
condition (i·kz→kz’) becomes 

  (ω / c)2  =  kr
2  −  ′ k z

2   (A26) 

These solutions disappear exponentially (normally 
very rapidly) for z→+∞ or z→–∞, hence the name 
‘evanescent modes’. But they also grow indefinitely in 
the opposite direction and hence also cannot be used as 
globally valid functions. In this role all solutions with 
Im(kz)≠0 are essential as local solutions superposed on 
the traveling waves for field matching [7][8], e.g. at 
tube diameter steps or irises, thus describing  the 
‘fringe fields’ 

 
A2 Cartesian evanescent mode 

In Cartesian coordinates the following field is a 
solution of Maxwell’s equations. It can by no means 
be decomposed into traveling waves, except for 
β=δ=0. 

  Ez = exp(−β ⋅ z −δ ⋅ x) cos(α ⋅ z + γ ⋅ x)          (A27) 
Ey = 0                                                            (A28) 

  

Ex = exp(−β ⋅ z −δ ⋅ x)  ×
A ⋅sin(α ⋅ z + γ ⋅ x +ψ) + B ⋅cos(α ⋅ z + γ ⋅ x +ψ)[ ] 

    (A29) 

  α
2 − β2 + γ 2 −δ 2 = (ω / c)2            (A30) 

α ⋅ β + γ ⋅δ  =  0                     (A31) 

A =
β ⋅ γ − α ⋅δ
γ 2  +  δ 2 ;  B =

β ⋅ γ + α ⋅δ
γ 2  +  δ 2           (A32) 

Using the angular function theorems, Ez can also be 
written as 



Ez = exp(−δ ⋅ x)cos(γ ⋅ x)exp(−β ⋅ z)cos(α ⋅ z)
      − exp(−δ ⋅ x) sin(γ ⋅ x)exp(−β ⋅ z) sin(α ⋅ z)  (A33) 

giving the field ‘on axis’ x=0 
    Ez (x = 0) = exp(−β ⋅ z) cos(α ⋅ z)         (A34) 

(A30) and (A31) are the complex equivalent of (4) 
or (A9). A and B in (A32) are linked by div(E)=0. By 
replacing cos( ) by sin( ) in equations (A27) to (A33), 
the complementary solutions appear. 

Only for β=δ=0 do these solutions ‘degrade’ to the 
‘classical’ traveling waves. This shows conversely that 
for each of the latter an uncountable number of other 
solutions exist. 

In cylindrical coordinates ‘transverse products’ such 
as exp(δxx)·cos(βxx) or exp(δyy)·cos(βyy) become 
Bessel functions of complex arguments as Jm((δ+i·β)·r) 
but the longitudinal products in z remain as above, i.e. 
the longitudinal force integrals keep the same 
configuration. 

Bessel functions of complex arguments are not very 
well documented, only the purely imaginary case is 
known as the modified Bessel function Im (see 
Appendix A1). Therefore the above derivation was 
done in Cartesian coordinates where exp and cos are 
well-known standard functions. 
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