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1., Introduction

Transverse coherent instabilities, driven by wake fields, may
be stabilised by frequency spread. The case where this spread comes
from the longitudinal momentum spread of the beam is straightforward,
at least for & coasting beam, because the longitudinal momentum is
a constant, which just affects the coefficienmts in the equations of
motion of the transverse oscillations, and hemce their frequency.
When the frequency spread comes from a nonlinearity of the focusing,
the situstion is less clear, because the coherent motion is then a
small addition to the large incoherent amplitudes that make the frequency
spread, and it is inconsistent to assume that it can be treated as a
linear superpdsition9 eod it is not obvious that the large-amplitude
frequency is the appropriate effective fesonant frequency for calculating
the additional motion due to & small perturbation,

Since the result is guite different Prom the usual assumption,
we try to make it convincing by three distinct attacks: in sections

2, 35 b . But the essentials, in a rough concise form, are in Appendix II.

4 We consider only the case where Lhe non-lineer term comes from
the extermal focusing system, not the case where it comes from the beam

! space-charge.

2., Free oscillations

In this section we study a rather simple situation to show that
the usual picture of non-linearity causing frequency to depend on
amplitude, then amplitude range making & spread of resonant frequencies,
can be misleading. We shall look at the free-ringing frequency of a beam

which occupies a region of phase-space with uniform density.

Consider particles that-move according to

%+ véx + F(x) =0 | (2.1)




e o

nere F(x) represents the non-linear part of the restoring

force, so Wwe can Suppose
7o) =0 , F'(0) =0

and %K is the period of small oscillations. For larger oscillations
0
the period will depend upon their amplitude A and one can express

the motion of a particle

x = A cos [v(A)t + ¢#] + higher harmonics f9.2)

Tf +the non-linearity is fairly small the higher harmonic terms will
be so also, and the trajectory of such a particle in the x,i plane
is roughly an upright ellipse”ga A1l particles on this trajectory go
round it once in the period 2ﬂ/U(A)e In the range of amplitudes
from zero to A will be found all periods from on/vo to 2 /v(A) .

If one fills the area enclosed by such a trajeétory with a
uniform density of particles, Liouville's theorem dictates that they
all go round with their own amplitudes and periods in such a way
that the density distribution is completely independent of time, that
is, the amplitude of coherent motion is zero. So let us rather consider
a upiform density distribution whose outline is just a little shifted

compared with the A trajectory, as illustrated in Fig.1.

- FULL LUNE

~
BIBTY LUNE

Tts semiaxes are A and Av(A)a They can be made equal by a suitable
choice of scale, but not simultaneously for different amplitudes.




The result of the shift 3 is to meke & thin lune-shaped region
occupied by particles just outside the A trajectory and an empty
lune just inside it everywhere else the density is as it was in
the unshif'ted case.

Now consider how these lunes move with the passage of time.
They move round in the phase plane with the period 2m/v(A). More
precisely: the points xxx which constitute their base lie on the
A trajectory and therefore go round with period exactly 21/ v( L)
for ever, while the points ... lie on nearby values of amplitude
and will go round with periods which are near to 27/v(A) and tend
to 21/v(A) in the limit of small § . It is olear thal the motion

of these lunes determines the motion of the centroid of the whole
beam, i.e., the coherent oseillation. Thus we have the somewhat sur-

prising result:

'
{

For a beam having uniform phase-space density fqrwq\\
all amplitudes up to some A, the free oscillation

period for oscillation of the average %, in the %
{ 1imit that its amplitude is small, is equal to the 3
% period of individual particles at amplitude A, and /
! /

*
shows no frequency spread.

Thus the frequency spread of particles that are immersed in a

uniform phase-plane density is "invisible", and the average motion

discloses only the frequency of the extreme particles. We show in

Appendix II how the effective coherent-oscillation frequencies are

such as to give this result.

There are some more remarks about our validity "in the

limit of swall 8 ®  in Appendix I.

Tt is worth mentioning that this argument with the uniform
density and the lunes applies equally to higher order modes like the

quadrupolar (throbbing~beam, beam-envelone, monopole)oscj’_llé“tionsm

e
By this we mean there is (in the limit of small coherent amplitude)

no slow dimirnution or beating of the coherent amplitude, of the kind
that noymally results from spectrum width. 1t remains true that the
frecuency is imoure in the sense cf containing higher multiples of
p(A), coming from the non-linearity.




3, The frequency response

We need to know the response of a large-amplitude particle

to a small external perturbation. So we shall solve

oo 2 - »

2 + vix + F(x) = B expiut (3.1)
and subtract the appropriate solution of

%o+ Vixo + F(%0) = O (3.2)

to obtain

X =X - X (3.3

We assume B small and drop terms higher than first order in it. Choice
of the appropriate X, avoids any B-independent part of x . So
Pfinally =x¢ will be proportional to B,

The method we use is to consider first the effect of a

perturbation in the form of an impulse, féplacing (3.1) by

2+ v2x + F(x) = B 8(% = to) (3K

Where 8( ) is the Dirac delta function.

For the unperturbed (302) we write the solution

xo = A cos [vt + ¢] + hh, (38

where h.h. represents the higher harmonic terms already mentioned
in (2.2). For brevity we are writing an unsubscripted v for v(A).
And for t earlier than to (3.4) is the same equation so we

give it the same solution:

£

o fort < te , X = Xo ( 3l




For times later than to the right hand side of ( 3e4)

is again zero and we take the most gemeral solution near to %o

for t » to

x = (A + 8A)cos[v(A+8A)t + ¢ + S¢]+ h.he (3.6b)

The two quantities &A and S are constants which are treated as small,
and can be found by satisfying (3.4) in the neighbourhood of t = to.

This requires

%(t = to+) - x(t =to =) =0
4 (3.7)
l;t('t = tg"k-) L X(‘t = tp '-) = Bi
Differentiating (3.6) and introducing the abbreviation
Adv _ P
v db &3
(in general K. depends on A)
for + = tg we have
$omie = B4 v {1sKiimingetos &)
. 54 v2 £t K cos(vt + o) (3.8)
= O A v cos(vt + o)
+ hahe

and (3(9"[) gives us two equatidns for &A and &8¢, with solutionsf?

® The quantities B8A and &y depend on To , the time of application

of the impulse, but they are constants in being indeperndent of the
time ©



= ~ sin(vtg+ &)
8A = B “TIK sin?(vho+ ¥)

PR cos( vtg+ &) =Kvtg sin(vto+ #)
- Av(1+K sin?(vto+ ¥) ) £

Giving for X4

0

il

]

£ 3 to » X % (4 - K/2)sin(t= o)v

+ %%(t = tp )cos(t~ to)V

+ hohe

where we have expanded the denominators in (389) and retain only as far

as the first order in Xo

r the delta-function perturbationg CB@A); to

@ Remember this is fo
(3.1) we must multiply

solve the case with simple-harmonic perturbation

and integrate  dbo
sition, justified by the fact th

from = tO t ‘. This is & cal-

by exp jwte
culation by linear superpo at we assume the
and its effe

grate easilys

cts small enough to work to first approximation

perturbation B
evaluation at the upper 1imit yields

3mn B, The functions inte

/. K . i
Ly = (‘l w“§> pre e B expjwt

¥ - gtau’ .
bl e B expjwt (Bmﬁ1)
&

oy
.
s
=




The lower limit is more awkward, as there are terms that oscillate
infinitely as %o » - w, but they all converge to zero if we assume
that @ has at least a little negative imaginary part ﬁ)@

Tf one puts K= 0 (amd hoh. = 0) in (3.11), one recovers
+the familiar-linear resonance. The extra factor (1 = K/?) inithe first
1line is possibly only an unimportant correction if K is small, but the
second line has a different order of (v = w) - dependence, and is

something new.

Ie The uniform-density case

We want to average (39ﬁ1) over a uniformly occupied region of
phase~space, in order to compare the result with that of section 2. Simplest
would be to multiply by wdA? $§ integrate from zero to Am , and divide
by ﬂAi :  but we can easily be a little more precise. Consider the
unperturbed oscillation of (395):

Xo A COS[V& La (],’f] + hoh.

(La1)

% = -A v sin[vt + ¢] + h.h.

The ellipse that fits the fundamental evidently bhas area « A%y in the

@
x, ¥ plane, and

d(r ABv) = 2n <1 + % ) v AdA (4.2)

So the response factor averaged over the uniformly filled area, from

(3@1ﬁ) and (L.2), to first order in K, is

Y

" That is by 2w AdA

RN



1 v K v(v?40®
TE v f <W“§“€’KW‘;‘Z>2"AM (1.3)

where Vo stands for v(Am) @

This can be integrated. Consider

N
dh vi-
. Ay a2 v+ P dv
V- W Ve o ® aa
=( zte - (Lo1)
Ve w §

So (4.3) is equal to

A
4 v A2 =
A; Vo Ve w®
: 0
|
T
m
provided @ dis not equal to *ws or *v ., If w is real and

m
lies in the range of v we get zero denominators in (AGB)g and can

deform the path of integration or give w a little imaginary part to

1)

zero «residue, Thus we have again the result that the uniformly filled

avoid them °. This does not change the result (4.5); the pole has
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region behaves as though all the particles had a resonant frequency

corresponding to the period at the greatest amplitude.

Such a system has no Landau damping. However, real beams do

not have éwuniform phase-space density with a sharp cut-off, so we

must extend the theory to more general density distributions before
seeing its practical implications.

5. Non-uniform density

Let the phase-space density be given by p(4) .

The number
of particles present is then, from (L.2)

e

N = [ p(4)  a(mav)

0
,—_/ (1 _,,322) v-p(A) 27AdA (5.1)
0

and the response factor averaged over the particles is the appropriate
modification of (4.3) :

i v K v(v2+ w®
i L1 Aty o) 2aban o

It is interesting to integrate this by parts. Call

and p(A) 2r
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then (5.2) is equal to

%[uv] m%f u® v da (5.3)
0 0

The first term vanishes at both limits provided w s£ v and pleo) is
small enough. Using (4.4) we are left with

P

[+

VA 2

F i A

m{%f p!(4) vgm o B
pd O <

i1 5
Y
. W,

Notice that dp/dA, not p, is the weighting function inside this
integral : as in section 4, regions of umiform density contribute
nothing, As a check, one can recover (4.5) by putting p'= -3(A-A))
into (5.4). If p' 4is non-zero at p = @ the usual small deforma-
tion of the path of integration is necessary and (5.4) yields an

imaginary, Landau-damping, part,

Our p' in the dispersion integral (5.4) agrees with
Laslett et al.ﬂj)g who found it by using the Vlasov-equation method;

but others who use a more direct approach usually fail to find it.
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Appendix T
i SC s msnie i

Small perturbations

No apology is needed for caleulating the case of small per-
turbations (smell & on page 3, small B, 8A, &, in section 3),
for we are mainly interested in criteria for stability of stationary
initial distributions, and for this the behaviour in the limit of
small perturbations is primordial. One leaves until later the
behaviour of unstable oscillations as they grow into the region of
non-small amplitude, and the possibility of finite oscillations
growing in a system where small ones do not. Some care is however
necessary with the time variable. For instance, when comparing x

with x, on page D we effectively made use of

cos [w(A + 8A)t + ¥

= cos [v(A)t + ¢ -svt sin[v(A)t + ¢] (1.1)

Tt is true that %K cos[v(A)t +¢] is - %%t sin[v(A)t + ],
S0 (Isﬂ) is correct in the limit of small 8A , But clearly it is in

Tact

[sv.t] <« 1 (1.2)

that is the condition for (1,1) to be a good approximation.

So we may say:
For any lt! one can choose 8v small enough to
make the approximation good.
= But, fartany ISvl greater than zero the

approximation will fail at sufficiently large ’t|$

This sort of behaviour 1s typical of approximate solutions to

gifferential equations.
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Exactly parallel remarks apply to the behaviour of the lunes
on page 2. :

- For any ‘t[ we can choose 3 small enough that they
go round t v(A)/Zw times, with negligible phase

error and deformation. =

~ But, for any |§| greater than zero they will be
grossly deformed and phase-shifted at sufficiently
large I‘%:la

For any specific-case of instability, with known growth
rate and some information on the minimum coherent amplitude needed
for practical recognition, it is possible to check mumerically whether
our small perturbation approximation is good., If &v is changing
slowly, our condition for validity (by a slight generalisation of (1.2))

is
J dvedt << 1 (1.3)

and if &v has been growing exponentially for at least a few time-

constants, this is

Syt <1 (I.4)

where T 1s the +imeconstant.

Similarly if the theoxry predicts stability with a certain
damping rate, one can calculate up to what level external stimulation

or noise can be considered to be smalle

Another difficulty is that (3,11) gives a particle amplitude
that tends to infinity as v tends to ®@ , so it is not obvious that
one can make B small enough for our approximation to be good for all
particles. However, the behaviour of particles whose v-dependence on
amplitude brings them close or on to such a resonance is known from
nonwi{near machine theory 2>D To the usual approximation there is in

the rotating phase-plane a stable and an unstable fixed point at the
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resonant amplitude, with topology like Fige2s

Fig. 2

No particles go to unlimited amplitude, even at large t, and such
a pattern can be immersed in a region of uniform phase-space density

without causing anything special in the behaviour of the average Xo

Finally a remark on the systematic disregard of the higher
harmonic terms and the fact that we have worked only to the first order
i the coefficient K., Ima machine with a high Q-value, or in the

medium and high field range of a machine with Q of only 5 or so, it



Al

is quite common for the Q spread and all the real and complex Q
shifts to be very small compared with Q itself. Then the machine
is practically linear in the sense that K is small and so are the
non-linear harmonic terms in the oscillations. Yet at the same time
the non-linear Q-spread may be about as big as the other real or
complex shifts associated with a possible instability, so is by far
not negligible in that connexion. In such cases it is perfectly
reasonable to study non-linear Q-shifts and yet neglect the higher

harmonics and higher powers of K.
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Average frequency

The behaviour of the centroid of a region occupied by particles
can be inferred, when the density is uniform, from the boundaries alone.
This is what we did with fig.1, in section 2, But another and more
general method is to work out what happens to the small displacement
vector 3 for a general particle, and then average this (weighted

with the density if it is not uniform) over the whole occupiesd area.

We do this for a model in which all particles move in circles

in an x, p phase-plane, like

2 = v(a)p
1L, 1)
p = =v(A) x
with v depending on the amplitude A. This is a somewhat artificial
model, but Hamiltonians can be invented to do it. Now a particle with
a little coherent oscillation in addition will have
(x +8x)° = v(B + 84) o (p + op)
{11.2)
(p+8p)° =-v(A+84) ., (x+ 6x)
Subtracting and working to first order in 8«quantities we get
§x = p(A)Sp + pSv
(11.3)
5} = = v(A)Sx ~ x8v
where Sv = v(A+84)~ w(A)
dv
= = §A
ETY 5
vK ;-
e W R e S
= 54 (IT.4)

from the definition of K.



Fig.3

From the geometry (FigaB) by resolving the vector &x,8p along
the direction X,P,

sA = (x8x + pBP)/A (I1.5

and so (IL,S) becomes

8x

vop + Kv(pxdx + p*8p)/A®

]

(11.4
op

1]

-v8x - Ku(x®sx + xpdp)/A?

b d
- -2

We now take a set of particles all with %* 8x, Op, and A but

with x and p corresponding to a uniform distribution in phase

round the A circle. Averaging over these particles gives




- X

x » O
S ]
PZ i A2/2

and (IL 6), so averaged, gives

5x v(1 + K/2)8p

(11.8)

]

gp = (1 + K/2)8x

so v(1 +

for the s n of the amplitude-A particles.

"orm density of particles from amplitude

cy , but we can anyway caleulate it ¢

2Av +A2%-K

i

onv (1 + K/2)

i

integral and find

| R ;c/z)l; b [vﬁ] im - w(a)
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Thus the extra term vK/2 is just enough to bring the average

value up to the extreme v, v(Am) .
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