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Due to a nonlinearity of the beam-beam kick, the crossing-angle collisions of bunches in the horizontal plane can cause
the coupling between the synchrotron and vertical betatron oscillations of particles . These resonances can be of the same
strength as the coupling beam-beam resonances between vertical and horizontal betatron oscillations . A common influence
of the crossing to the horizontal plane and of the phase-averaging effect on the vertical synchrobetatron resonances is briefly
discussed.

1. Introduction

There are many arguments why an angle crossing is a desirable operational option for colliders in
which a high luminosity must be obtained using multi-bunch beams. The performance ofschemes with
the crossing in the vertical plane is limited by resonances between vertical and synchrotron oscillations
of particles [ 1 ] . For this reason, the designs of the future B-factories mainly focus on the schemes
with the crab- or conventional crossing in the horizontal plane (see, for instance, refs . [2,3] ). Since
the crab-crossing is a very new technique, the schemes with a conventional crossing in the horizontal
plane are presently considered as a number one for practical applications . As an additional advantage,
it is expected that the crossing in the horizontal plane will excite only the coupling resonances between
the horizontal betatron and synchrotron oscillations [4] .

In this paper we calculate the strengths of the synchrobetatron beam-beam resonances with the
excitation of vertical betatron oscillations for the crossing in the horizontal plane. These resonances
occur due to a nonlinear dependence of the beam-beam deflecting force on the transverse offsets
of a particle . If 0 is a half crossing angle, as amplitude of the synchrotron and aX amplitude of the
horizontal betatron oscillations, then the strengths of these synchrobetatron resonances coincide with
the strengths of the beam-beam betatron coupling resonances, calculated for ax = Oas . In a collider
with flat bunches, like B-factory, relevant instability of the vertical betatron oscillations can limit the
acceptable value of the crossing angle. In colliders with round bunches, these resonances can result in
additional limitations to those, which were found in ref. [4], on the position of the working point in
the tune space.
We assume the weak-strong beam approximation, zero dispersion function in the interaction region

and neglect chromatic effects.
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2 . Strengths of resonances for short bunches

For short colliding bunches (QS « ßZ ), where 65 the length of the strong bunch and ßZ the value
of the vertical fl-function at the interaction point (IP), we assume that in the interaction region the
oscillations of a particle near the closed orbit are given by the following equations:

V/-J,flz(e)cos(vz),

	

x =

	

Jxfx(e)cos(rVX),

s=R09=ct+Rog,

	

(p _ (p, cos V/,,

	

0p =
-P

	

s rp s sin V,,

Ro(pzlp) = dz/d8 = z~,

	

Ro (pxlp) = x',

	

Op =p - po,

	

(1)

VZ = vz,

	

V/z = vx,

	

tVs = vs,

Iz,x =
pJz,x

	

Is =
pRoysVs = pJs

2

	

21til

	

2 .

Here, Il = 27rRo is the perimeter of the closed orbit, ri = (1/y z) - oz, cx momentum compaction
factor, and po - yMc momentum ofthe synchronous particle . Equations of motion ofthe test particle
from the weak beam are generated by the Hamiltonian :

H(J,V,0) = UxJx + v--Jz + UsJs - Vbb(J,V,0),

	

( 2 )
where the term Vbb describes the perturbations due to the beam-beam interaction . For a Gaussian
distribution p (rl ) over transverse coordinates in the strong bunch :

z z
p (rl ) = rQQz

exp ~-
(x

2QOs)

	

- 2QZ) '

	

(3 )

and ultra-relativistic y » 1 electron and positron bunches, colliding at the angle 20, we can write Vbb
in the following form"

Vbb - 4NPCRo ~ (s + ct)j
dks exp { i[kx (x + 20s) + kzz] -

kxQx 2 kZ~Z }

	

(4)

Here, A (s) is a linear density in the strong bunch . Eq. (4) describes the perturbation ofthe weak bunch
as a sequence ofthe periodic and very short (during At - QS /c) kicks . The strengths of resonances due
to this perturbation is estimated by the values of the amplitudes of the following Fourier expansion

Vbb = E Vm,n eXP ( i [ Mx Vx + m, V, + m s y/s - nB ] ) .

	

(5)
m,n

Here, m denotes the combinations {m,, mZ , m s} . Since

a Vbb
Ja
=
-~a Ja

+

	

bb

	

~Va = va -
a

a il, ,

	

a = x, Z, S,

	

(6)
a y/,,,

where 8a are the (dimensionless) decrements due to, say, synchrotron radiation damping, the ampli-
tudes ( Ja ) and phases (y/a ) of oscillations get systematic variations when the tunes (v,, v, and v,)
approach the resonant values

mxvx + m zvz + msvs = n.

Generally, the rates of these systematic variations are determined by I Vm,n 1 .
For short bunches (QS « ßz) we may neglect in eq . (4) the modulation of ßx and ßz along the

interaction region . Then, the azimuthal harmonics Of Vbb are determined by the integral

zt This expression can be easily obtained taking into account that indeed 0 « l . Then, a recalculation Of Vbb from the
reference system, where the strong bunch has no transverse velocity, results in eq . (4) .



ri
vn =

	

fÂ (2s - ROV) exp(-ikx 20s + ins/Ro)
0

- exp(-ikxOROV + intp/2)

	

duÂ(u) exp(-ikxou + inuIRO) .

	

(8)

Typically, the resonant harmonic numbers (n) are not very high . If, for example, the amplitude
(as)max = Ro (tps)max > Qs
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determines the longitudinal aperture of the ring due to the beam-beam resonances, then one has
jnj((ps)n,ax « 1 . For such harmonic numbers we may substitute in eq . (8) exp(-intp/2) - 1 and
exp (inu/R o ) - 1 . This gives the following expression for vn

00

m= -oo
and defining Ex = QX + 02os , we find (a constant phase factor, which is not important here, is
omitted)

Vm,n - Ne2 f d?k J�, (kxax) "Im (kzaz)Jm (kx Oas) exP ~- kx2

	

2 2
~x + kzUz

1 -

	

(12)

Eq. (12 ) predicts two sets of synchrobetatron resonances for a scheme with the crossing in the hor-
izontal plane. First, these are the resonances with an excitation ofthe horizontal betatron oscillations
(mZ = 0) . They are described by the amplitudes (to simplify expressions we take az = 0)

Ne 2

	

d2k

	

,

	

k2~2 + k2a 2
Vm'n = npc ,~ 7[k2Jry`x(kxax)Jms(kx4'as)exPl_

	

x x_

	

2

	

z z ~ .

	

(13)

It is important that except for the resonances with mx = 21, and hence, ms = 2q, where q =
0, f1, ±2, . . ., eq . (13) describes the resonances of the odd order (mx = 21 + 1 and ms = 2q + 1) .
So that if, for example, mx - 1, the possible values of ms are ms = ±1, f3, . . . . This result coincides
with results of simulations in ref. [4] . For very flat bunches (a,< Y-,) we can put in eq . (13) a,= 0.
Then, the integration over kz results in

vm,n =
2
7rP

C2

1
dk

	

a,
kJmx (k

	

x

)
Jm s

Ck
EQs

/
exp (-k2/2) .

	

(14)
0

exp(-ikX0Rotp)v _
211 (9)

If we take as A (s) a Gaussian distribution, then A(kxO) = exp(-k 202 Qs /2) and we obtain

Y1 n - 21i exp
(kxY'Qs)2-x(-ikORO tp )

,
(10)

Using the definition of Vm,n, we can write
2n

4Ne2R0 d3 ~r
Ym,n

_
+ + )

PC f (2~)3 exp( -1 [mx~x rnz~z ms Vs]
0

2 2 2 2,g2
xf dk2vn(kx)exp{i(kxx+kzz) - kxux 2 kzQz

~
.

Substituting here vn (kx ) from eq . (10), the expansion
00

exp(ikacosyr) _ 1: 1mJ,n (ka)e'mW (11)
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For small amplitudes (Jx «Exff, where EXff = Ex/ (ßx) and for mx = 1 we can substitute in eq . (14)
J, (kax /Ex ) - kax/ (2Ex ) . This yields

Here,

is the beam-beam parameter for horizontal oscillations, In (x ) =

	

e-xz Im (x2 ), and I,, (x) is the
Bessel function of the imaginary argument [ 5 ] .

Another set of synchrobetatron resonances is described by the amplitudes with mx = 0 and even
ms (now we take ax = 0)

Nee

	

d2k

	

k212 + k2az2x
7CpC

1
7rk2 Jmz (kzaz)Jm s (kxOas) exp ~

	

x
-

	

2 z

These are resonances with the excitation of the vertical betatron oscillations . Except for the difference
between ax and Ex , the amplitudes V,,,n coincide with similar amplitudes for the coupling beam-
beam resonances mxvx + m,v, = n, calculated for the amplitude ax = Oa, For this reason, these
resonances have equal strengths for equivalent amplitudes.

Simple expression for the amplitudes V�,,,, can be obtained in the region uz K a z « Ex (see
appendix) :

Note, that due to very flat geometry of the strong bunch, eq . (17) holds for both integer (m, = 2) and
higher order resonances . This means that in the region ax - aZ « Ex the perturbations due to vertical
synchrobetatron resonances will dominate . Direct comparison of eqs. (15) and (17) shows that in
equivalent conditions the rates of the variations of Jx/E eeff (due to an integer resonance mx = 1) and
of J,/E, differ not very much, if Oas/Ex > 1 (see also fig . 1) . This figure shows that factorsZ�,s almost
coincide for horizontal and vertical resonances in the region Oas/Ex >_ 5. As can be seen, in the region
Oas/Ex < 1 vertical synchrobetatron sidebands are well suppressed as compared to the strength of the
corresponding betatron resonance (70 (x) - 1, if x --, 0) . A suppression of the strengths (V�,,� ) at
small amplitudes of the synchrotron oscillations is typical for synchrobetatron resonances .

KVI,,,,,, - 2SxExeff

z Nee
bx = 27CpCEXff

'ill 23 /2 Z OasVm,n -- 2 zEz
V

Cz
Fl-(M2

- 1 ) Im,/2 C2~x
,

e
i as

ff Zms/z (O~x)

	

Jx « EXff .

	

(15 )

Fig. 1 . Dependencies of the strengths of the synchrobetatron
resonances on the amplitude of synchrotron oscillations ;
(1) . mx = 1, ms = l ; (2) . mz = 2, ms = 2; (3) . mx = 1,

ms =3.

(17)

Fig. 2 . Resonance line (a, vs as) for vertical oscillations;
~z/IAI = 5.



3 . Vertical phase-space near isolated resonances

The fact that the strengths of the vertical resonances are determined by a simple expression in
eq . (17) enables the calculation of the phase trajectories ofvertical oscillations near isolated resonances
and a direct evaluation oftheir widths in both the amplitude- and tune-space . The motion near isolated
betatron resonance in slow variables (JZ and X = VZ -n0/m ) is described by the reduced Hamiltonian

H=Ax+ 2
where

It can have fixed
OH
OZ

= o>

The first equation

These are simple parabolic curves which have maxima, if A <_ 0 . In this
from eqs . (20) results in

As can be seen from eq . (18 ), if A <_ 0, betatron oscillations have a bucket in the slow phase-space .
The center of this bucket is placed at y+,, while its width (Syb) is determined by the equation

F =

Hf =Ax+2Z(F±V) %Ix .--

Yst = IÔZI (F + V).

Fig. 3. Schematic dependence of the beam-beam tune shift
on amplitude of betatron oscillations near a difference-type

synchrobetatron resonance ; mz = ms, (as ) �, = 0 .
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-0 .5

case, the second equation

(22)

az/C'z

a,/°z

Fig. 4. Schematic dependencies of (a) H+ and (b) H_
on amplitude of betatron oscillations near a difference-type
synchrobetatron resonance ; mz = ms, (as) � , = 0,

~Z = 0.05, (a) 4 = -0.025, (b) 4 = -0.015 .

Z[F+Vcos(MZX) ],/x--, x=JZ/EZ, (18)

Oas V
23/2

f(MZ_1)ZoC2~X/
Oasl . (19)

21,

points :
OH
~JZ

= 0. (20)

yields sin (m,x) = 0, which specifies the so-called Ht-Hamiltonians :

(21)
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H

	

(yst ) = H+ (y),
which gives

8yb = ÎQÎ

	

FV .

	

(23)

The (dimensionless) frequency of small phase oscillations in the bucket (8vb ) can be easily calculated
using eqs. (18) and (20) . The result is :

ôvb = Im,A I V
F+V - (24)

The synchrotron radiation damping does not destroy the resonance, if bvb » ôZ .
Due to the dependence of the beam-beam tune shift on the amplitude of synchrotron oscillations

Ov, (J

	

a) =

	

Z
F (as)

	

(25)

the resonance condition (Ov-,(J.,as) = -0) defines a resonant line in the space (a z,a s ) (see fig . 2) .
As can be seen from eq . (18 ), near a pure betatron resonance (ms = 0), synchrotron oscillations are
not affected by the perturbation . This means that after a longitudinal deflection of a particle, its JS
decreases as

Js(0) = (J.),nexp(-(5,O) .
Provided that 8vb >> ôZ, the particle moves in the plane (aZ , as ) along the resonant line, which increases
the amplitude of its betatron oscillations . Such a blow-up due to the so-called phase-convection effect
is specific for two-dimensional resonances [10 ] .
The description of the oscillations near an isolated synchrobetatron resonance (m,v, + msvs = n )

can be reduced to the study of an equivalent one-dimensional problem using an additional integral of
motion

JZ - js =C.

	

(26)mZ M s
In the case of the sum-type resonance (m,ms > 0) eq . (26) and the resonance condition give one

resonant value of (JZ )st and, therefore, only one bucket around this point.
In the case of the difference-type resonance (m zms < 0) as can be seen from fig . 3, the resonance

condition (Ov, (JZ , as ) = -0) generally yields two stationary amplitudes . This determines twobuckets
in the betatron phase-space . One around the slow phase

ms n
X = V,, -

	

,/5 - -0 = 0,
mZ ms

and another onearound X = n . As seen from figs . 3 and 4, the distance between these buckets decreases
and buckets become wider, when JAI decreases . Fig. 3 also shows that given value of C determines
a threshold value of 0, when the resonance conditions cannot be held anymore. This describes a
well known fact that on the difference-type resonance the amplitudes of the coupled oscillations vary
within a limited range. In this sense, the accumulation of particles in buckets near the difference-
type synchrobetatron resonances does not limit the dynamic aperture of the ring, but results in the
limitation on the peak value of the luminosity of a collider .

4. Strengths of resonances for long bunches

Let us now briefly discuss the influence of the length of the strong bunch on the strengths of the
vertical synchrobetatron resonances . In the case a, > ßZ and for flat bunches (6X » a, ßX » ßZ), in
the calculations of harmonics V,n,n we must take into account in eqs. (2) the modulation of the phase



of vertical betatron oscillations due to
dWz = dzz + vz =

	

1

	

(27)
ds ds Ro 9Z (s)'

For a resonance mzvz + msvs = n, after the calculation the harmonics of Vbb over the phases of
betatron oscillations using eq . (11 ), we can rewrite eq . (12) in the form (for the sake of simplicity we
take aX = 0 )

27r
2Ne2

	

d2k

	

dV/S

	

_imsvs
Vm'n - 7CPC

	

,~ 7Ck2 j 27c

	

e
0

- 00

V(o) = 2s Em,n

	

Sz z

6s/ßz
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f dsA(2s-Ro(V)
-00
k2 62 k26 2

xJm, (kz

	

.Jzßz(S))exp

	

-

	

x X 2

	

z

	

z - ikx20s + imzy/z (s)

	

.

	

(28)

In the region az K az « 6X due to a fast convergence ofthe integral over kx, we can neglect in eq . (28)
the variation of 1/k2 with kX. Remaining integration over kX yields

dk, exp ~-k2x - ikx 20s
I
_

	

expf

	

UX

Substituting this expression in eq . (28), we obtain

Vm,n = Ym VinOn .
Here,

Jz ) e-vz /2,
Ez

is the strength of the resonance calculated for the synchronous particle due to head-on collisions with
a short bunch, and

~271

	

Do

	

2 2
Y,n = 2 % 27r e-lm5w 1 dsÂ(2s - Roço) exp

{-2-00

	

62

	

+ imZV/z(s)~
0

ßz(s)
ßz

is the so-called resonance suppression factor [ 6-8 ] . Fora Gaussian linear density in the strong bunch
we can rewrite eq . (32) in the form

2n
Ym =

	

2/7C

	

dV/, e-1MSWs
,~ 27C
0

p

00

	

2

	

a,2 2 2

	

1

	

(33)x 1

	

(
duex

	

-2 lu-
ascos

26s
U/s l

	

- 2

	

6
62
su

	

+ im, V/Z (~u) I

	

1 + ~ 2u2,L

	

J

	

/

(32)

This expression only by a factor exp(-2026su2 /6X ) in the integrand differs from similar expressions,
calculated for head-on collisions of long bunches. For this reason, eqs. (31 ) and (32) describe the
excitation of the vertical synchrobetatron resonances with both even and odd ms. The last possibility
(ms = 2q + 1) is a specific feature ofthe collisions oflong bunches. Since in the region O6s « 6, this
factor exhibits a very wide dependence on u, the behaviour of the strengths of resonances (Dc Y� ) will
differ from that, calculated for head-on collisions, only by small corrections (oc (O6s/6X )2) (figs . 5
and 6, see also in ref. [ 9 ] ). In particular, for small crossing angles a strong suppression of both betatron
and synchrobetatron resonances can be predicted for core particles, if 6s - ßZ ; for tail particles (as »

- 2~2s2 . (29)
X

(30)

mz = 21, (31)
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Fig. 5 . Dependence of Y,f� on amplitude of synchrotron
oscillations ; vs = ßi, aX/as = 0.01, mz = 2, ms = 1,

from top to bottom : 0 = 0, 0.002, 0.005, 0.01 .

p

	

2 [ ascos yrs 12\

	

-

	

p (- as COS2 yrs ) .ex

	

-	u-	2a

	

ex

	

2as

	

s
This results in the following expression

Yf� , = -Zms(as/ors)(Y')o,
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0 .4

0 .3

0 .2

0 .1

ßz

Fig. 6 . Dependence of Y� on amplitude of synchrotron
oscillations ; as = /0,*, ar/as = 0.01, mz = 8, ms = 1,

from top to bottom : 0 = 0, 0.002, 0.005, 0.01 .

ßz ) the strengths the synchrobetatron resonances can reach (or, even exceed) the nominal values [ 8 ] .
Figs . 5 and 6 show an additional suppression of the vertical synchrobetatron resonances in the region
as < as with an increase in ¢.

Dependencies of the vertical beam-beam tune shift (Avz) on the amplitude of synchrotron oscilla-
tions and on the crossing angle are described by Yo . Fig. 7 shows that with the increase in the crossing
angle the dependence of Ov, on as varies from increasing (for head-on collisions) to decreasing (at
0 > 0.005). As seen, in the region 0 - 0.0025 (and for aspect ratio 0.01) this dependence becomes
very weak, which can eliminate for long bunches the blow-up of the beam due to the phase-convection
mechanism.

In the region Oas >> aX the value of the integral over u in eq . (34) is mainly determined by the
region I uI < Qx/(Oa,) « 1, where we can take

(34)

where the factor (Ym)o coincides with a resonance suppressing factor of the synchronous particle
(a s = 0), calculated for the bunch length Qs = ax/O:

(35)

0 1 2 3 4 5 6

Fig. 7 . Dependence of Y.� on amplitude of synchrotron oscillations; as = ßz, aX/as = 0.01, from top to bottom : 0 = 0,
0.0025, 0.005, 0.01 .



If as - f Z, then, C O « 1 and

(vX

	

36)(Y' )0 - l~

	

Ym = crx 1ms(as/us) .

5 . Discussion
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This case corresponds to a strong reduction of the luminosity due to both the increase of the effective
spot sizes of bunches and dynamical limitations.

For all (except, maybe, integer and parametric) resonances the values of (Ym)0 become very
small [8] in the region ßz ^~ a,/O « QS, which corresponds to very long bunches, or to a micro_ -ß
lattice . In this region the value of the luminosity will be determined by limitations due to horizontal
synchrobetatron resonances .

A conventional crossing of colliding bunches at the angle in the horizontal plane is accompanied by
the excitation ofboth horizontal and vertical synchrobetatron resonances and, generally, increases the
dimension of the beam-beam resonances . These synchrobetatron resonances are especially important
for the tail particles ofthe bunch (0a s > Y-,) . In the case of the round colliding bunches, a new family
of synchrobetatron resonances results in additional limitations on the position of the working point
of the ring.

In the case offlat bunches (a, >> a,) the condition Oa,IEX <_ 1 is not so severe like similar condition
for schemes with the vertical crossing . However, an accumulation ofparticles in the buckets of vertical
oscillations near these resonances can saturate the luminosity of the collider, ifthe perturbation due to
horizontal synchrobetatron resonances is small . If the perturbation due to horizontal synchrobetatron
resonances is strong, such an accumulation will result in the decrease of the luminosity. If JAI « ~Z,
vertical synchrobetatron resonances produce buckets well outside the core of the beam (a, » aZ ) .
This can cause a deviation of the vertical tails of bunches from Gaussian tails. Phase oscillations in
the bucket can produce new families ofbeam-beam resonances.

The dependence of the beam-beam tune shifts on the amplitude of synchrotron oscillations near
betatron resonances results in the increase of amplitudes of betatron oscillations due to the phase-
convection effect. Due to quantum fluctuations ofthe synchrotron radiation this can cause additional
blow-up of the transverse sizes ofbunches near betatron beam-beam resonances . This effect is specific
for short bunches (QS K ßZ ), or, if 65 - ßz, for large crossing angles .

For long bunches (Qs - ßz ), crossing in the horizontal plane at small collision angle (0 « QX/Qs) has
a little effect on the strengths of beam-beam resonances . The features of the beam-beam instability, in
this case, are mainly determined by the phase-averaging effect and by the modulation of fl-functions
along the interaction region .

Crossing at the large collision angle (0 » a,/a,) results in the reduction of the luminosity due to
both geometric and dynamic effects, if 65 - ßZ . A reduction of the strengths of vertical resonances is
possible for micro-/3 lattices when ßz - QX/O « QS. In this case the luminosity will be limited by the
horizontal synchrobetatron resonances .

I thank Prof. S . Kurokawa, who drew my attention to these problems, as well as for his encouraging
discussions and comments. I am indebted to KEK and its B-factory group for their hospitality .
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Appendix A. Calculation of V.,n for vertical oscillations

Let us estimate the amplitudes V�,,n in eq . (16) in the region

Qz « az « Ex .

	

(A. l)

D. V. Pestrikov / Vertical synchrobetatron resonances

Due to a fast convergence of the integral over kZ, we can put in eq . (16) Q- = 0. This yields
x2

vm,n =p 1 dkxjm(u)Jms (kxOasllx)exh(-kxl2),
-x

Jm(u)= I dkz J,,, (k, u ) u= (A.2)
7c(kX+kZ)

Using the formula [5]
nf

J,n(x)=JI V/cos(xsinV+my/), m=21,
n

0

we transform j,n (u) into the following expression

n
1

in, (u)
dy/_

Ikxl .~n cos mz Vexp(-Ikx lusiny/) . (A.3)
0

In the region (A.1) we can substitute in eq . (A.3 )
exp(-kxusin y/) = 1-kxusinyl+C(u2) . (A.4)

This results in
n

2u 1
j. (u)

dyl
-- -u fn cos mz y/ sin +l/ = .

7T mZ
- 1 (A.5)

0

Substituting this expression in eq . (A.2), we obtain
x

1
Vm'n

Nee 2az_ dkxJn, (kxOasllx) exp( -kX/ 2 ) . (A.6)
npc 1,7 mz -

-x
The integral

1
Zms/2 C21,

Oas =
-

fns 21',
27r f dkxJn,(kxOa,IY-x)exp(-kX/2),

is expressed in terms of the Bessel function of the imaginary argument [5] :

Zm(x) = e-x27m(x2) . (A.7)
Defining also

Ne2ß*
= (A.8)z 27zpcuzlx '

we rewrite eq . (A.6) in the following form
23/2

um,n
as-- 2 z JzEz 1) Im,/2 (ZEx) (A.9)~(m2 _z
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