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THE ABEL-TYPE INTEGRAL TRANSFORMATION WITH THE KERNEL (t® - x?) 2
AND ITS APPLICATION TO DENSITY DISTRIBUTIONS OF PARTICLE BEAMS

P.W. Krempl

ABSTRACT

The inversion and some properties of the Abel-type integral transformation
with the Kernel (t® - x%) "} are demonstrated. The application of this transfor-
mation to the different phase-space projections of a coasting beam, whose parti-
cles perform two-dimensional pseudo-harmonic oscillations is shown and some fre-
quently-used distributions and their projections tabulated. In a similar way,
the correlation between surface densities and projected densities for rotational
symnetric systems is given, with examples for the most important cases. Some
useful transformation pairs are tabulated in the Appendix.
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INTRODUCTTON

In order to increase the information output of results obtained with a large
spectrum of beam observation devices, we have to invert an integral equation of
the type

it dt - -
g{xj f( , ([0=<xsRr) (1)
where g(x) is a given function and f(t} is to be determined. (Usually we have

2R 2 Qmax’ where émax denotes the largest diameter of the beam.) To demonstrate
how frequently the above equation applies, a few examples will be erumerated.

Let us consider first the one-dimensional density distribution p(x) produced
by a set of harmonic oscillators, oscillating around x = 0 with amplitudes given
by an amplitude distribution f(a). The contribution of each oscillator to the
density at x is (a? - xz)_%/ﬂ. Thus, the density p{x) produced by all of them
results as

R :
A G;T: o

where R denotes the upper limit of the amplitudes. Equation (2) is currently
used for the determination of the betatron amplitude distribution of the particles
in a synchrotronl‘“), where often p(x) is observed instead of f(a). We then have
either to invert Eq. (2}, or to approximate p(X) with functions whose transforms
are known,

A second general class of measurements requiring the inversion of Eq. (1)
are all those measurements on rotationally symmetric beams, where the surface
density P(r) of any physical property can be measured only indirectly by its pro-
jection p(x) onto a one-dimensional space. This projection p(x) equals the inte-
gral of P(r) over a stralght line with the distance x from the centre (see the
figure below):

p{m)~—f Pr) dy = 2 f/(?r% 3)

LR Ve . &
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Identifying 2rP(r) with f(t), and p(x) with g(x), we obtain again the Abel-type
integral equation (1). It is worth pointing out that, since P(r) represents the.
surface density dQ/dF of a physical quantity Q, the radial density n(r)

rnl.(!‘ﬂ = %g' = 2nr M)

is connected with p(x), following Eq. (3), by

o) = 1  aly)ar
:;r - x?
x

in just the same way as is the amplitude distribution f(a) with the density distri-
bution p(x) in the first example. Since many electrical and most of the optical
measurements performed on beams and plasma jets belong to this class, the Abel-
transform (1) becomes quite important, and its inversion by analogue devices has
been achieved®).

INVERSION AND PROPERTIES OF THE INTEGRAL TRANSEORMATIONS
g0 = [3 £(t) dt/YA% - x and h(x) = [¥ £(t) de/fi? - ¢

Let us introduce the abbreviation:

-g'(x)=!ff%— x, 1) £ft) | @
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where K(x,t) stands for the linear integral operator in the above equation which
is of the homogeneous Volterra type of the first kind. In a similar way we can
define the dual operator J(x,t):

) = f f(it_“:_ o) £e) s)

It might be noted that g(x) depends only on the values £(t) over the range
x £t s R, whereas the function h(x) depends on f(t) over the range 0 = t £ x.

The difficulty lies in the fact that the non-Hermitian Kernels are not ana-
lytic over the whole interval (0,R) due to the two branch points at t =
Furthermore, it will be shown that the existence of the inverse is only ensured
for such functions £(t) leading to transforms g(x) and h(x), which are at least
differentiable once. Unfortunately, we cannot perform the proof of the differen-
tiability of g(x)} and h(x) by the differentiation of the integrals (4) and (5)
with the usual rule, since there are singularities at the variable limits of the
integration domains. In order to avoid a long discussion of the restrictions on
£(t), which ensure that the above equations have unique inverses, we shall make
the following assumptions:

i) £(t) is integrable over the range (0,R)

ii) the functions g(x) and h(x) exist and are at least once differentiable on
(0,R).

The inversion of the transformation (4) becomes quite easy with the develop-
ment of the Erdélyi-Kober operators on fractional integration"g). To avoid the
inversion with these not very familar operators (see Appendix I}, we make use of
the method given by Srivastav1°), which is applicable to the inversion of equa-
tions of the general forms:

| witiy - @

X
£ie) at
f T - = ™ hix) , (7
) TR -1
where £(t) is integrable over (a,b), 0 < a < 1, and ¢(t) is a strictly monotoni-
cally increasing function in (a,b).

To invert Eq. (6) we introduce the integral
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and substitute for g(£) the expression (6). Interchanging the order of integra-
tion and replacing the variable £ by ¢(£) we obtain

) - j o | - AT [ o 0
#x)
where the integral with respect to ¢ can be identified with the beta function
B(a,1-a) = T(a)» T(1-a). We have, therefore,

and finally,

fx) = - 13 Hlil—aii %,r .2%“ E ;E'a ®
as the inverse of Eq. (6). In this way we g:t with Eq. (7)
S .
) ;r e o ‘,(;,; o — )T oG - o~

and hence

(8

for the inverse of Eq. (7).

Setting ¢(&) = &%, oo =}, a=0, b =R, Egqs. (8) and (9) become

ﬂ]_'—;dxfgﬁ(iﬁ K'(x¢) g(z] (10)
=7 dx f 57%('%5 T(x €) nlg) - an

whereas Eqs. (6) and (7) reduce to (4) and (5), respectively. We have therefore
found the inverse operators K '(t,x) and J-!(t,x) to K(x,t) and J(x,t) defined in
qs. (4) and (5).

Since owing to the fact that the differentiation of the integral cannot be
performed by the usual rule, the expressions (10) and (11) are not very comfortable
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for practical calculation, we shall derive some further properties of the integral
operator K(x,t). At first, we see from Egs. (10) and (11):

Klxnt)= -2 £ Kx o)

(12)
- y _ 2 d
J{xt) = & 2 J(x, ) . (13)
Let us now prove the following statement
-1 _ 2 y d
K {xt)=-%xKxt) 5 , (14)

which allows many simplifications in practical computations of the inverses.
Starting from

) = Kix, 1) £ £(r) , (15)

we apply the inverse operator K™!(t,x) and obtain, comparing the differentials on
both sides

fe) = - £ Kt, x)x glx) .

A second application of K !(x,t) produces

d) = 3 35 Koutk ffe)

Comparing this with Eq. (15) yields the identity

~ d
Mot = 1 2 Ktk 16)
from which we can immediately derive relation (14

In the same way we obtain

Tat) = 2x Jxe) £

- . 7
It can further be demonstrated that
-2 & ke o) = T (18)
?21" ‘ii Jx, t)e Je,x) =1,

(19)
where I denotes the identity operator.

A further useful relation has been derived
by Erdelyls) and is known as "fractional integration by parts":

f x g(x) Kx, t) £t) dx = I x f{x] J(x, t) glt) dx . (20)
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. Finally we have the normalization theorem:

R

R

f Kix, t) £t) dx = J’ fltyde , B ¢33
o H

which can be proved by setting g(x) = K(x,t) f£(t) and entering

f(t) = -(2/%) (@/dt)K(t,x)xg(x) into the right-hand side of Eq. (21)

ol

Thus we get

t=R

ffmat-—l f arft) = 2 [Hoj - FR)]

with

- BES

Then Eq. (21) follows, since F(R) = 0 and

R R . .
HO) = [ o) ax = [ K0 1) £(e) ax
H 3
Equation (21) can also be written in the form

fae [ A 7
Jof s

The generalization of the normalization theorem for n independent variables, i.e
! dx, v [ dxy K £ e KXy ) iy, o 1]
0

4]f@mf £ty e o)

can be demonstrated by induction.
with Eq. (21).

(22)

For n =

1 we have proved the above statement
Now let us assume that

R
f dx, ... f dx, K.[xl" tﬂ] sue K.(xn-p tn-r] fr}tr: ooy Ty tnﬂ
H

- E_]'H f dt; ... f dtn—l. 3 P ty) = P[t“a

is true. Integration of F(tn) over t , and application of Eq. (21) yields

R

f oo d -

and therefore Eq. (22) is also true.
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CHARGE DENSITY AND CURRENT DENSITY IN BEAMS
WITH PS - NIC OSCILLATIONS

Assume a coasting beam of particles, which perform pseudo-harmonic oscilla-
tions around the s-axis described by

x = ME cos [,s) + a]
u/B; ‘.‘l:os [wz[s] + B] | (23)

v(t+ To) = vt

z

I}

s

with

wls) = IES&T kK=x2 . | | (24)

S

To derive a general expression of the current and charge density, we can
make use of a formalism derived elsewhere!!) in comnection with the self-consistent
calculation of space-charge flows, and which will be summarized briefly for our
purpose.

Let us consider 14, a, B, A, 4, v as the six constants of the motion for
each individual particle moving in a conservative system, and let us assume that
in the integrated equations of motion {e.g. Eq. (22)] the quantities t and 1,
appear only in the form t + 74, We can then regard T = t + 19, @, 8, A, U, V as
generalized coordinates of a six-dimensional space A in which the particles move
with the constant velocity t = 1, parallel to the t-axis. Therefore, the density
W in this space can depend on t only in the following form:

W=f{t—t,08 A . (25)
For a stationary flow, W depends neither on T nor on t. Thus W represents only

the distribution function of the particles over the five parameters o, B, A, U, V,
i.e. over each possible trajectory in the real space.

As the density of the f\-space, W has to be normalized over A:

qN=ﬂI[f Wdt da dg dh dudv (26)
A-space
where gN represents the total charge being considered. For a stationary flow,
where W is constant with respect to 1, N becomes infinite and we should rather
perform the normalization to the finite quantity q(dN/dt) suppressing the inte-
gration over the T-range.
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If we take T, o, P as a subset of these new coordinates, we can regard Egs.
{23) for every set of chosen constants (A,u,v) as a transformation of the real
space into a generalized three-dimensional subspace {1,z,B8} of A:

=tyre,8) [with X = {xzs]) . )

Under the assumption that the Jacobian vg = 3(x,z,s)/d9(1,a,B) of the transforma-
~ tion (27) does not vanish, the real space-charge density p can be obtained by

p=M ﬂ'f#-'dl du dv (28)

and the current density j in the s-direction by

j=MIff%%%dkdud\:, (2937

if we replace the coordinates t, «, B by x, z, S, X, ¥, v, solving Eq. (27) for
7, o, B before evaluating the integrals (28), (29). M denotes the multiplicity
of the transformation (27) between the subspace {t,a,B} c A and the real space

R®, i.e. the mmber of points in the subspace which belong to the same point in
the R3, '

Now let us perform this for the motion given by Eqs. (23). For the Jacobian
of the "transformation' (23) we get

= ’:‘: = Auv/B B, sin [wx + o) sin (y, + 8) . (30)

Solving Eq. (23) for T, o, B we obtain

T =8/v @< TL<®
a = arccos ('—-E—l-w] -m<a<+w (31
WB: * h

B*“arccos[z —w] —mT<B<+n
B, ST

which, introduced in Eq. (30), yields

Jg = v‘/xzsx -x \/uzsz -2, (32)
The multiplicity M equals 4 (within the range -7 < ¢, B £ +7) and the functions
P, J can be calculated by .
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- W
,t) =4 = = dh du d 33
ﬂ[’i ] m\"/}? -;?Mzﬁz _ H dv | ( )
. . W
ta= [ = ess )

: if we specify the distribution function W

Let us suppose that the oscillations (23) in the beam are incoherent. Then
the distribution W will not depend on the phases o and 8. We make the further
assumption that the distribution F of the velocity in the s-direction is the same
over the whole beam at t = 0, therefore only a function of v. Tﬁis implies a
distribution function W of the form

W = Qvt - vt)) vF(v) 2;113- G v) (35)

where G(A,u) denotes the distribution function of the normalized transverse ampli-
tudes A, u. Qo = Qo(s - vt) gives us the initial charge distribution along the
s-axis at t = 0. If the distributions F(v) and G(},u) are normalized, i.e.

o oo

f ! G, 1) dr du =1 (36)

+w
f Fvdv=1, (37)
we can show that W is normalized over A:
+eo

T dt v Qjvr *vﬁ] T dv Fv) +f do. f dg 211}—2- f dkf du G(}t,uﬁ_; f ds Qfs —s,) = Nq .
= % Sro o O

—c

“Setting

5 1 l F F dli u)
o, 2) = & | —r——aa, (38)
T f f /szx_xz /usz -2 ,
X z
Bx 7oz
we obtain with Eqs. (33), (34) and (35) for p and j the expressions

A%, t) = fs, t] plx, 2) (39)

1% t) = I(s, t] pufx, z) , (40)
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where

Qs 1) j' Qs - vt) Fv) av Y

Is, 8] = T Qfs — vt) vE{v) dv (42)

are the current and charge per unit length at time t, which have the initjal
values at t = 0:

ds0) = ol -
Jl(lso 0] = QG[SJ v ’

where U denotes the average velocity in the s-direction:

+m
v j. v dv .
The relations (41) and (42) can be used to calculate the longitudinal dispersion

of a coasting bunch due to the initial velecity distribution of its particles.

Let us return to the transverse density distribution. If we introduce the
local amplitudes

a=MB,
b = u/B,

and the corresponding distribution function

(44)

y. i Gﬂk,u]
g(a'iH] - JB;B:- ] ) {45)

which, due to Eq. (36}, has also to satisfy the normalization

ffg{a,u] dadb=1, (46)
[ I

we can simplify expression (38):

L gla, b) , |
p,ﬂx,zﬂ J‘f Ya* — x% Vb —z° dadb . 47)

Using the symbols introduced in Section 2 and the normalization theorem (22)
‘we obtain

o

I_L o, 2) dx.dz=—‘-‘§-ffx[x,a)1<ﬂz,bﬂ gla, b dx.dz=1 . (48)

m
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Under the restriction that pt(x,z) is differentiable throughout the whole
(x,z)-plane, the inversion of Eq. (47) can be performed with formula (24) and
yields

gla. b) = 4ab K(a, x) K(b,z) T z) , (49)

X9z

' Reinserting A, u we get for G(i,u)

o) = ot KB ] K o) T )

In cases where oy is only differentiable inside a finite domain, the formulae (49)
and (50) are invalid, but the inversion can also be performed using a more general
inversion formula (see Appendix V).

THE NORMALIZED TRANSVERSE PHASE SPACES AND THEIR PROJECTIONS

For practical calculations, one preferably uses simpler phase spaces than
the real phase space (u-space) of the canonical conjugate variables. In our case,
where the motion is given by Eqs. (23), we have two possibilities to simplify the
phase-space representation. We either keep unchanged the constant of the motion
A, H or the real space variables x, z. '

i} The substitutions

..—'...x’ =—"i 51
| T TR O
reduce Egs. {23) to

£ =X cos (¥, + o)
¢ =ucos (y, + g

and the particles can be regarded as harmonic oscillators with respect to their
phases ., ¥, . Since we have '

e dE ) -
= = — A5 -
€= o g
S S i wp
dlllz U ‘:2 ’

the trajectories in the phase planes (£,£'), (z,z') are circles with radii A and
u, respectively. Owing to the assumption that all values of o, B8 are equally
probable (i.e. incoherence of the betatron oscillations), we have a constant po-
pulation along the circumference of each circle. Thus all the information of the
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transverse phase space lies in the function G(X,u) and we obtain the distribution
for the four-dimensional "quasi" phase-space {£,r,£',2'} by substituting

\=JErE e
u=m '

in G(x,n). If we measure the transverse density pt(x,z) and introduce a normdlized
density o (E,0):

0", ¢} = ol&/Br, o/R;) VBB, (53)

{which fulfils the normalization

ffp*dijdc=1

—

owing to the normalization of pt) , we obtain G(A,u) by

. 2
& 1) = Mu K, £) K(u ¢ :ESC : (54)

ii) The second possibility for a simplified phase space lies in the substitution
(44). Introducing the new phase-space variables

x 1= /B & (55)
Zs=4/8 ¢,

the particles move in the "normalized" phase space {x,z,x’,z'} along the circles

N . ,
x*+ x%=a

(56)
2+ 2 =b .
The relation between the amplitude distribution g(a,b), defined in Eq. (45), and
the transverse density pt(x,z) is given by Eq. (49). But it must be pointed out
that x’ and z' have not the meaning of a real derivative, neither with respect to
T or to s, nor to the phases Yoer wzl Nevertheless, this phase space is the most
convenient one for practical use.

In Appendix III, Table III.Z gives the relation between the functions
pt(x,z) and g(a,b) and their projections on the subspaces P{x,x'), p(x) and n{a),
which can easily be obtained via the normalization theorem (21). The relations
between G(A,u), p (£,Z) and their projections are tabulated in Table III.3. Some
particular distributions are listed in Table III.4 ' ' '
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SURFACE AND RADTAL DENSITIES IN ROTATIONALLY-SYMMETRIC SYSTEMS
AND THETR ONE-DIMENSIONAL PRGJECTION

In Section 1 we had the relation

p[]x) = 2 f % = 2K(x, r] rPfrr']

between the surface density P(r) of a physical quantity [which is rotationally-
symnetric around the origin of the (x,y)-plane and therefore a function of

T = (x?+y?) %] and its projection p(x) onto the x-axis. P(r) is assumed to be
normalized:

ﬂ Ar)dxdy =1 .

xZ4y2ep?

Changing to polar coordinates dx dy = r dr d¢ and integrating over ¢ yields

- R
on [ ) ar =1 . (57
0

Using Eq. (21) we get from Eq. (3):

]R plix) dx =4 f K(x, r)r P(r) dx = 2r f rAr) dr =1

~R

as expected, since the total quantity must be independent of the way of integra-
tion! Instead of the surface density P(r) we frequently use the radial density
n{r), defined as

nfr] = 2nr ) (58)

If we substitute this in Eq. (3) we obtain

px) =1 f % dr (59)

; d . . M. |
with p’(x) = dp/dx. These relations, together with some examples, are tabulated
in Appendix IV, '
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INVERSION OF g(x) = K(x,t)f(t) AND h(x) = J(x,t}£(t)

WITH THE ERDELYI-KOBER OPERATORS

The Erdélyi-Kober operators are defined by
: ] zxzu ( 2 Zr 1 201—-28+1 fﬂt}
K, sf(t) = f_t-x AT (] de
o : R ﬁj y

i X
Togfle) = Zm [ - P e o) ar

for a > -1, B> 0, and for -1 < B < 0 by

2o-1

S [ e o) ae

X

~Za—-28-1 d

i) = o j - o () de .

If we let 8 tend to zero, we obtain the identity

Ka.n = Ja,o =1,

APPENDIX I

| (1.1)

(1.2)

(1.3)

(1.4)

where I stands for the identity operator. The following product rules

Jop Jasey = Jogey

Kag Kovg,y = Kagey

(1.5
(1.6)

can be shown by interchanging the order of integrations and making use of the

formulae

2 f (x? - 97 (12 - ) £ gt = LGB XA -

s +v)

for the calculation of the inmer integral.

The inversion follows now formally from

-1 __
Ko = Kovg,—

_l —
Ju,ﬂ - Ju+ﬂ,—ﬂ .

(1.7)
(1.8)
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These operators can also be obtained from the operators (6) and (7) given by
Srivastav!?) » but have been derived before in connection with fractional integra-

tion and dual integral transforms by Erdélyi®), Erdélyi and Kober®:7”) and.
Sneddon®s®). Since we know already the inverses of

R x
) . 1 . 1
Kix, ) = j at Jomy and Jx,t) = j dt oy
X 1]

we see that the restrlctlon o > -3 can be relaxed at least for Iy 8" Doing this,
the inversion of Egs. (4) and (5) can be formally obtained by comparlng Egs. (4)
and (1.1}, (5) and (I.2)

Kx, ) = & K,
J(x,t) = g Jopl
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APPENDIX II
| COLLECTION OF THE MOST IMPORTANT FORMULAE CONCERNING
THE TRANSFORMATION g(x) = K(X,t)£{t)

Definition:

I . dt

xt)s =

Kxt)t= [ =
x

Inverse:

Kt,x] Kk, t) =1L

K(t,x)" = - %H‘% Klt, x)x = —%—t K, x) a‘-i;

Normalization theorem:

R R
.[ K(x, t] £t) ax = L f ) at
Special properties of the operator:

K[x,t‘]fg*—- % ad; K(x, tht,

£ xxt) = x(xt) & &

K(ox, )=f—‘k—*=f—“dw—al“=l<{bb /a) .
’ J V2 - (axf ¢ \/(*t/u)z~x2 ’
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Transformation pairs

£(t) 0st<R g(x) = K(x,t)£(t) 0Sx<R
A. General rules
af, + Bf, ogy + Bgz. Linearity
T, 2 df _ 2 df
tf(t) FRIRT - %% + x2K(x,t) & - Kot
(Partial integration)
B. Finite range (R < =)
R
1 arcosh X
t - x?
t? % [RJEZ— x% + x? arcosh %]
t? TR xR
th nz2 _;L;[Rn—l RT- %2+ (n-l)sz(X,t)tn-z:l
1 1 X
T 3 {?T/Z - arcsin ﬁ]
2 t
= 0st<a 1 0fx<a
T /a® - g2
f(t) = gx) =
0 aftiR 0 a<xZ2R
2 a a a
-ﬁktarcoshﬁ 0 < SE a - kx OSXSE
f(t) = gx) =
R a
0 2<t<R 0 F<X<R
%t a? -~ t2 0%t % a2 -x* D<x<a
f(t) = g(x) =
0 a<t?®s 0 a<x <R




Transformation pairs (cont.)
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= F e B L
0 teesky ] | L Can Ll L .
g EE:E‘)B% (XZJM'Q Dex<l
[0 1<xsR
ta-t9% o<t <1 A2 % [ﬁ] -k i [;c] 2111+ .
f(t) = N =0,1,2,... . k=0 2=0
0 terern |5 1 ng [w) O () pex<n
1<x <R

*} The coefficients are related by (see Bovet, Ref. Z):

bo
b,
by
be

bg

13
o
0 0
0 0
o 0

1 1
5 7
4 6
15 35
8 8
15 35

16
0 =
0 0

L :
16
105 Cs
64
315 C
128
s .




Transformation pairs (cont.)
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£(t) 05tcw g(x) = K(x,t)f(t) 0Ex <o
C. Infinite range (R = «)
_ 2 - 2 7 = 2
2teut =I-11(tJe“t \/_%emc
3 - 120) e ME & -ut [ 2 '2] T -x? °
(8t - 12t) e Hs(t) e a2 - 6+ L \/1: e

2
(32t5 - 160t3 + 120t) e Mt = [16x" + 111—6 80x> + 60 - éﬂ + 1—3} x
i, -ut w-ux? '
= Hs(t) =] X‘/]T e
-ut? T -ux? ¥
Hypey (8) €7 Fopeer C) T 7 )
4t‘j- [ zk(t’m u 2k 1(t’ul] ~-ux
H.x e
-t 1) 2k
X e
-2n n - 1)1207!
t D= 1,2,0. -1z - n=1,2,... +)
(1;2;n)x
k ks kes-2 2
: _1 (4x*)5 (=157 (sep)1(20-1) 11 L2
D ¥l =5 @0 ) Esmyersan T 6P
5=0 L=0
k s k-s -
_ 2 k- 28-1311!
Ve 1) = 2K (Ze)) 18 Z Z i TET(2s+20e1) T

) (a3bso) -l’%‘%’m"_‘"—l
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APPENDIX ITI
RELATIONS BEIWEEN THE DENSITY DISTRIEUTIONS IN THE
DIFFERENT SPACES
Table III.1
Variables (Definitions) Range Distribution
Real transverse space - < X < +oo o(x,2) , P *)
coordinates x,z —© € 7 < 4w
xl:=‘/§'_§___[_2_c__] -0 < xf <+
X avy W
F(K,X',Z,Z') s P(x,x")
. d Z —o : ©
AR I/B—z. a"\p’; [7§z-] <z’ <+
. < .

Local amplitudes Sac<+ g@a,b) , n(a)
az=x2+x12’ b2 = g2 + zl2 <h <+
Normalized transverse space

coordinates - < F < " (,m) = DVBXBZ
E=x/VE , t=2z/VE e < g <4o | pt(E) = p/E

¢ o dE ¢ o 9 o ! © * ’ "N =

£ "'a"q';';s C "‘Z\}TZ"‘ <f'; <+ F(E,E,C,C) FBXBZ
e =x'/VB ., ¢ =2 /VE] -m < gl <o | P(EET) = PR
Normalized amplitudes

A=a/B , u=b/VB SA< o+ | GOLY) = gvB B,
M=t agl? gyt =g e glt Su< +o [ n*() =n/k

A, u are constants of the motion and related to the emittance e by
€= Amaxumax e .
The related densities G and n are also invariants.

*) p in these tables is identical with pt(x,z) in the text.
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Table III.2

F(x,z,x',z") g(a,b) p(x,z)
1 b L K(a,0K(b,z) 20 )
F= mg(a,) = (a,x)K(b,z 5z
' p -  laabkea,0K(p,2) 227
g = 4m“abF ) »2) Fra
400 00 . 1 .
p= | [ [raxa L K(x,a)K(z,b)g(a,b) ")
4ot oo oo +oo
P(x,x") = j’ [rad | @ =fg(a,b) db p(x) = f p(x,2) dz
[ R = D -0
1 : _1 d
P = I3 n(a) T K-(a,x) a_)P(‘
d
n= | 2maP -2aK(a,x) a{-
+o0 1
p = f P dx' 1 xx,)a(a)
Table III.3
F'(5,0,6',2h) G, 0" (8,2)

" 1 1 %" *)
F o= . MGU\!U) 2 K()\,E)K(U,Z) as_"a;
G = 42 \uF ANUK(ALEYK (u,T) a_ZEj B

- H » L] 3£3C
a6 400 .
o=t [ [F a a | 5 K(EDKE,1060,1 )

+w +oo o

ey s [ [Faa) oo =?G(A,u) & |p'® = [ e a
0

P - g Wey - TE0.0

n* = | 2mp’ -2XK(2, £) g%
400

pre| [P = K(E,)n" ()

*) For finite domains of differentiability see the general inversion formulae of
Appendix V.

4
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APPENDIX IV
‘ RELATIONS BETWEEN SURFACE, RADIAL, AND PROJECTED
DENSITIES FOR ROTATIONALLY-SYMMETRIC SYSTEMS
Table 1V.1
Surface density | Radial density | Projected density
P(r) n(r) p(x}
= 1 _1 d
P= m" Il(l") T K(T,X) ﬁ
n= 2mrP(r) - ZrK(r,x) %le-
P =] 2ZK{x,r)rP(r) -}T—K(x,r)n(r)
+o +oo +oo + oo ]
ff.[dedy=l fndr=l fpdx=l
-C0 w0 [} -
SOME NORMALIZED DENSITY DISTRIBUTIONS
Table IV.2
P(r) p(x)
: y -ur? —px2
Gaussian te NP
T b
1 < 2
—_— <R —— /R - 5
TrRZ r ,n.RZ ) X IXI he R
Constant
0 r>R 0 |x] >R
2 8 Y%
— (R? - r? r <R [Rz-xzjz x| R
: . = ¢ ) 3nR* x|
Parabolic _
0 r>R{0 Ix[ >R
3 [_}"_] r <R l-[u/ﬁz—xz-— |x[ £ R
R%x R - 2 "
2
Conical - X arcosh ——R—]
R ||
0 r>R |0 x| >R
1 1 1
T r<A |3 |x| <A
Constant projected A A% -r A
density :
0 TZA |0 x| 2 A
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APPENDIX V
THE TWO-DIMENSIONAL OPERATOR K(X,t)K(z,u)},

AND ITS INVERSE IN A MORE GENERAL CASE

For the inversion formulae (49) and (54), we assumed the functions p(x,z)
and p"(£,r) to be defined and differentiable throughout the infinite domains
{x,2]0 S x < +w, 0 S z < +=} and {£,5]0 € & < +», 0 S £ < +»}, respectively. Un-
fortunately, this assumption camnot be made for most practical cases, where the
distribution is set to zero outside a bounded area D. In these cases we must
restrict the domain of integration to D; otherwise the discontinuity of the first
partial differentials at the boundary would prevent an inversion. For these cases -
the following generalization holds.

let D be a compact domain, defined by

= {t,ult 20, uz0, By, t)2 0}, v.1)
where B(u,t) = 0 represents the boundary of D, We shall further assume that the
equations

ol u] - o
Bt )] =

have unique solutions ¢{u), ¥(t), which are at least once differentiable functions
for t,u 2 0. We define the two-dimensional operator

dt du
X(x, t) Kz u)y : ff__?_%_uz__ , v.3)

Xxs2)

(v.2)

where D'(x,t) denotes the subset

D{x,2z) = {t,ut > x, u 2z Bt,u) 2 0}cD .

Let us now assume that F{t,u) is a regular, bounded real function defined over D.
Under these restrictions G(x,z), with

) - oDy Kol .

is also a regulai‘ function over D, which equals the integrals
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#(z) 2 Wt) 4 _ ,
- t u » W
X, z) = —Regee—— ' (V.
o) - [ iy [ Al L
X Z . .
9(x) 4
" t ﬂt, u!
Gx, z) f J‘T"'—Z' f Vo (V.5b)
where the outer right integratmn has to be performed first.
The integral
¥t) ,
: “du Ht, u) :
Alt,z) = | Voo (V.6)
z

can be regarded as a function of t » which depends on the parameter z. Thus,
G(x,z) represents its one-dimensional Abel-type transform

oz)
Ox.2) = ,ﬁgl v.7)

X

on the finite domain 0 € x € ¢(z). Since the dependency of the upper 1limit on a
parameter does not affect the validity of the inversion formula (14), we obtain
for A(t,z) the expressions

#fz) ' ¢(z) ‘
. d 5 P! 3 Z .
A(t’ Z] = '1% % j‘ :izx_ t2 Z] f f—"-'“z_ T (ﬂx 2) . (V.8)

In the same way, we can invert Eq. (V.6) with z,u as the pair of transformed

variables and obtain

w dz zA[t,z) " d 8A(lt, z)
- _ _ ZZ y Z _‘— l *_Z_ » Z
e u) e Y e e O

u

If we now insert (V.8) in the right-hand side of Eq. (V.9) we get

' sl |
X sz
o) - zt“f — azf\/_”"—'?‘ x|

In an analogous way we can show the validity of the equation

#(u) ¥(x) o]
. 4 dx 3 z 86x,z)
- [ |5 e e | 0w
T u
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The differentiation of the right-hand side integral of Eq. (V.1l0a) yields

oz) . olz)
o ” X d 3(%(:7«]
] et f et o)

and F(t,u) can be calculated with the formulae

Ht, ]=—tu ff xa ¥dx7)

x" -t 9z 3x
Dty

, ¥t) . :

L4 dz 1 adx, z) d¢

+ — . ' —_— :
W f ‘/? —ut :/q,z[z] -t? [ ax ]x=¢[z) dz (V.12a)

vhere D(t,u) denotes the domain

@ w.an

Dt,u) = {x,z{t < x, u <z B(x,z})2 0} .

The substitution x = ${z) as independent variable in the second integral of
Eq. (V.12a) yields the equality '

o)

[ 7=

-

-Q{z dz
9(u) 4
X 1 ﬁk. z
J‘ 7;5 e ;7¢2['x-]— u? [ 1_ o) (V.13)
where the identities
dut)] =t yeu)l=u (vV.14)

following from Eq. (V.2) have been used. With the definition (V.3) and formula
(V.13) we can simplify the inversion formumla (V.12a) to the form

9 G(x,

Ht,u) = = tu K, x) Ky, z); ——

¢fu)

o [ e[S, o

From Eq. (V.10b) we get instead of Eq. (V.12a) the equation
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- ff T e

D(t,u)

#u)

rve |

~ Since G{x,z) is a regular function, the order of derivation can be interchanged,

dx

[afilxu 2) dy

el W.IZb)
=¥(x]

i.e.

YGxz) _ ¥4z, x)

at ax oX 9z

and hence the first terms on the right-hand side of Egqs. (V .12a,b} and (V.15a)
are identical. The comparison of Egs. (V.12b) with (V .15a) yields the interesting
equality '

#{u)

J A L«xﬁh—‘m‘i‘?[ e

. for all t € {0,6(u)}. We can therefore make the conclusion:-

d6 | 36(x,z) 86(x, z) dy
E; B [ ax }zmp[x] " [ oz :|Z=1P{x] dx . .10

From this it follows that G(x,z) has to be constant along the boundary z = ¥(x)
of the domain D. This fact must be remembered if we search for the transformed
F(t,u) of an arbitrary function G(x,z), because if G(x,z) does not fulfil the
boundary condition

6[x, $(x)] = oz}, z] = const v.17)
an inverse will not exist in a unique sense. If G(x,z) satisfies this condition
together with the suitable conditions for its differentiability in the compact
domain D, we have a unique inverse which can be calculated from one of the equa-
tions (V.10a,b), (V.12a,b), or (V.15a,b). The last equation is given by

4 5% X, Z
F[t, u) = ? tu K[t, x] K(u, z]D _B_:E—a'z_]

ip(t
4

i 7 ], e

=4(z)
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In order to get a short notation, we will denote the inverse operator by

Kt, x) K(u, z]D K[x, K(z, u]D
With this notation we can rewrite the relations between p(x,z) and g(a,b) from
Table II.2 in the general form

P(x' z] =3 K(xo ] K(zn U}D 8{3: ] (v.18)

gla,b) = 7 K(a, x) K{b, 2); p{x,2) . (v.19)
The other two-dimensional relations must be changed in an analogous way. %
Example

Let us assume the normalized transverse density distribution

o [1-(&) - (] s pse Ko 2
TAB [l [ A] [B inside the ellipse i + z ‘ 1

o(x,2) = (V.20)

0 outside this ellipse .
The boundary function is given by

. z

Bx,z)=1- [{-]2 - [%] (v.21)
and we see immediately that p(x,z) is constant and zero at this boundary. Since
o{x,z) is regular and bounded inside the compact set D:

D = {x,2]|0 < x, 0 <z, B(x, z} 2 0}

an inverse X(a,xJK(b,z ]31 o(x,z) will exist. First, we determine the functions
p and ¥ defined in Eqs. (V.2):

B¢z, 2] = 0 = o(2) \/ ll

Blx,4(x)] = 0 = P{x)= B /1 - f]

(V.22)

Now, we shall calculate the connected amplitude distribution g(a,b)} with the help v
of Eqs. (V.19) and (V.15b):

- .' ‘ dx dz ¥
a, b} = 4ab :
g(,)_ f \/x—a ‘/z—bz ax sz
1 D(a,b] )

¥a)
dz 1 3;_)!'5, z)
- | — - . (V.23)
J‘ [22-b* Jo{z) —a® oz iz
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For the derivatives of p we get
B 4z ¥p
%z TAB B ax oz
and Eq. (V.23) reduces to

=0

vs)
4 l6ab

gle.b) = nAB f ;z—b2 W

Using the substitutions
. . ! 2
t=7 a=v, 8=vfa) - 81 (4]
we obtain for g(a,b) the expressions:

_ 8ab

gab) TrABzf‘/t—a\/B-t—ABz

for

abeD={a,bl0<a, 0<bBa,b) 20} .

The proof that g(a,b) is normalized over D can be done easily, substituting

a/A = r cos 6, b/B = r sin 6 into the integral

/2

1
%AIBE ffabdadb—Bf dz smzcosz!r dr—~1‘..

(V.24)

(V.25)






